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ABSTRACT 

 

 Traditional quality control charts are designed to monitor and control a quality 

characteristic for processes with a stable in-control state in which enough data is available 

to estimate the process parameters prior to a production run.  For many processes we 

desire the ability to monitor a quality characteristic that has an in-control state not stable 

such as a degradation or deterioration process that exhibits a linear trend as its in-control 

state.  In addition, there are many times when sufficient sampling for in-control parameter 

estimation is not possible before the production run due to cost or collection time.  We 

therefore desire a self-starting charting scheme that monitors both in-control and out of 

control linear trends.  We present here the needed results so that a process with the in-

control linear trend can be charted to detect slope and intercept shifts, when accurate 

information on in-control parameters is not available.  We propose a Q chart scheme, a 

EWMA Q chart, and a EWMA Q chart with delay parameter d that utilizes results from 

statistical process control and linear regression.  The developed control chart schemes are 

tested through simulation studies and applied to real data examples.      
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PUBLIC ABSTRACT 

 

 Quality goods and services are highly valued by today’s consumer and companies 

that do not meet their quality expectations will suffer financially and lose customer 

loyalty.  Therefore, it is in the best interest of the company to ensure that as many of their 

goods are of satisfactory quality as possible.  The meaning of quality goods and services 

is well known but how do we ensure a process has the ability to consistently output a 

quality product.  The answer lies in monitoring the process based on its statistical 

measures and quality control charts help us do just that. 

 Quality control charts help us define quality both mathematically and visually by 

charting a quantity of interest such as the mean value of a quality characteristic of the 

process.  We estimate the mean and standard deviation of such a quality characteristic by 

collecting a sufficient amount of data from the process when it is said to be in-control.  

After gathering these estimates we have a baseline for which we can compare our future 

process observations against.  We can then make a determination of the state of the 

process based on the number of standard deviations an observation lies from our in-

control state.  If we determine the process has deviated significantly from its in-control 

state, the engineer can take corrective action to resolve the quality issues. 

 Unfortunately, the time and effort taken to get enough observations up front to 

properly estimate the in-control parameters can prove to be difficult and costly.  So the 

charting technique we propose has a self-starting property in which charting can begin at 

the start of a production run which helps to reduce the cost and time commitment taken to 

estimate the in-control process parameters.  In addition, traditional control charts have 

another limitation in that they are limited to the case in which the quality characteristic of 
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interest has a stable mean.  However, in many processes such as a degradation or 

deterioration process this mean is not stable and is instead approximated with a linear 

trend.  Traditional control charts would signal immediately because they are designed for 

stable means, so we propose three methods that will effectively monitor deviations from a 

linear trend.  Lastly, another problem we have encountered with traditional self-starting 

charts is that our in-control parameter estimates can be contaminated with out of control 

observations.  Therefore, we introduce a delay parameter to our statistic that minimizes 

the in-control state contamination.  In order to monitor the performance of such a process 

it is our desire to develop a chart that can detect in-control and out of control linear trend 

which we accomplished by applying linear regression results to a self-starting control 

chart statistic.  
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CHAPTER 1 INTRODUCTION 

In the manufacturing environment as well as many other engineering applications 

it is desirable to monitor the performance of a process so errors can be identified and 

corrected on the spot which will enable the engineer to minimize cost and nonconforming 

parts.  Quality and Reliability literature documents a number of methods to accomplish 

this but we will focus on one specifically, statistical quality control charts.  Control charts 

are often considered one of the more simplistic on-line statistical process control 

techniques, but can prove very powerful when used properly.  The ultimate goal of any 

control chart is to reduce variability in the process and make overall process 

improvements.  Control charts are a proven technique for improving productivity, 

preventing defects and unnecessary process adjustment, providing diagnostic 

information, and estimating process capability (Montgomery, 2005).   

 The basic construction of the control chart stems from a chosen quality 

characteristic of the process that is being analyzed.  A process is said to be in statistical 

control if the process is operating with only chance causes of variation, which are an 

inherent part of the process (Montgomery, 2005).  These chance causes of variation are 

random in nature and appear as white noise centered around the mean of the process of 

interest.  When there is larger variation present, larger in magnitude than white noise, we 

suspect that there could be an assignable cause present that has caused this alarmingly 

large observation.  The out of control state is reached by the occurrence of assignable 

causes which are mainly attributed to improper control or adjustments, operator errors, 

process faults, or defective raw materials.  And it is the responsibility of the engineer to 

identify and remedy these problems (Montgomery, 2005).  In the out of control state of 
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the process a large proportion of the process output may not satisfy the quality 

requirements established by the engineer.  Therefore, we desire a method to quickly 

detect the assignable causes of process shifts so corrective action can minimize the 

amount of non-conforming units manufactured, which is accomplished by the use of a 

control chart.   

The basic statistical quality control chart is a graphical display of a quality 

statistic vs. the sample number or time.  The chart is made up of a center line and upper 

and lower threshold values that if exceeded indicate the out of control state of the process 

being analyzed.  The center line (CL) represents the average value of the quality 

characteristic of interest in the in-control state and is used as a reference value.  The 

thresholds mentioned earlier are named the upper control limit and the lower control limit 

respectively.  The upper control limit (UCL) and lower control limit (LCL) are chosen so 

that when the process is in-control nearly all the points will plot inside its bounds, 

typically UCL and the LCL are defined by the mean ± 3σ.  Since the UCL and LCL are 

designed in this fashion a point that plots outside of the control limits is a cause for 

concern.  Shown below in Figure 1 is an example of a control chart.   

Figure 1: Example of a Statistical Quality Control Chart 
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The interpretation of the control chart follows from the statistical concept of 

hypothesis testing.  Under the null hypothesis, which is our assumed state, the process is 

in-control.  However, when a point plots outside of the control limits the null hypothesis 

is rejected, and we conclude the process is in the out of control state.  

 There are typically two main phases that characterize the statistical control 

charting process, Phase I and Phase II.  Phase I is the preliminary set up of the control 

chart.  In Phase I the in-control state must be reached and maintained to accurately assess 

the value of the in-control parameters such as the process mean.  This is done by charting 

the process and systematically eliminating assignable causes repeatedly and then re-

charting until a stable state has been reached.  Once the stable state is reached the last part 

of Phase I is to estimate the statistics such as the mean and variance of the in-control 

process.  Phase II involves comparing new observations to that of the in-control process 

distributions by designing appropriate center line, UCL, and LCL to quickly detect the 

change of state of the process. 

To evaluate control chart performance in Phase II a few key concepts must first be 

understood.  Similar to hypothesis testing, there are two types of errors in using a control 

chart. Concluding the process is out of control when it is actually in-control is defined as 

a Type I error.  Likewise, concluding the process is in-control when it is actually out of 

control is a Type II error.  Control charts are designed to minimize both of these errors 

but this minimization requires a balance of the two since there is a trade-off when one 

type of error prevention is favored over the other.  For example, moving the control limits 

further apart decreases the Type I error but it necessarily increases the Type II error as a 
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result.  When assessing performance of any process it is extremely helpful to have a 

metric so the performance of one method can easily be compared to that of another.  In 

Statistical Quality Control Charting this metric is called the Average Run Length, or 

ARL.  The in-control ARL is defined as the average number of points that must be 

plotted before a point indicates an out of control condition, so the higher the in-control 

ARL the better the performance of the chart (Montgomery, 2005).  The out of control 

ARL, ARL1, is defined as the average amount of samples needed to detect a process shift.  

It is therefore desirable to have a short out of control ARL and a long in-control ARL so 

the engineer must find a chart that maximizes this ARL performance. 

1.1 Literature Review 

 Now that the basics of control charts have been introduced we will outline the 

major categories of control charts relevant to this work in our literature review.   

1.1.1 The Shewhart Control Chart 

We start with an explanation of the simplest control chart, the Shewhart control 

chart which was developed by Walter A. Shewhart (Montgomery, 2005).  The Shewhart 

control chart plots a statistic of interest such as sample mean against time or sample 

number.  Shewhart charts use a center line, upper control limit, and lower control limit 

for process monitoring.  The Shewhart control chart is used for single sample hypothesis 

testing in which the current state of the process is determined in-control or out of control 

based only on the status of the most recent observation.   The quality statistic which is 

plotted on the chart as each observation occurs is connected in time sequence by the use 

of straight lines.  In the case of Shewhart charts a quality statistic at time 𝑡 is independent 

of all quality statistic observations greater than or less than 𝑡, which is a defining feature 
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of Shewhart charts.  Shewhart chart research paves the way for the rest of SPC control 

chart research to follow.  The origins of SPC control charting started with the 

introduction of the Shewhart control chart by Walter A. Shewhart (Shewhart, 1931).  

Shewhart and Deming outline how to control and regulate variables and how to properly 

establish tolerance limits by taking a look at manufactured products (Shewhart, 1939).  

As more and more research has been conducted in this field numerous charting 

techniques have been developed all stemming from these original findings.   

 Shewhart control charts are useful in their simplicity and interpretability but are 

generally only effective in detecting large shifts in the process and are often much less 

effective when trying to detect smaller shifts (Montgomery, 2005).  The Shewhart chart 

breaks down when small shift detection is desired because it analyzes the current status of 

the process solely off of the most recent point plotted.  The Shewhart chart does not 

consider the points that were observed prior to the most recent observation.  So at the 

time of each observation the state of the process is assessed by only analyzing one point, 

the most recent observation, which is its major downfall.     

There are several charting methods that use the information from the previous 

observations of the process instead of considering only the most recent one, and we will 

outline two methods below.   

1.1.2 The CUSUM Control Chart 

The first of these is a cumulative sum control charting technique.  The idea of the 

cumulative sum control chart, or CUSUM chart, is that it captures the history of the 

observations by charting the cumulative sum of the deviations of the mean of the sample 

observations from a target value 𝜇0 (Montgomery, 2005).  The in-control state of the 
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cumulative sum chart is then characterized as a random walk around zero.  The 

cumulative sum chart is effective in small shift detection.  

 One of the first developments in CUSUM control charts was presented in Page 

(1954).  Page (1954) applies a new methodology that monitors a quality characteristic’s 

cumulative deviation from a target value.  Ewan (1963) outlines the type of processes for 

which CUSUM charts are best applied and mentions several of the developments since 

their introduction.  Lucas (1976) discusses v-mask CUSUM control schemes and showed 

they perform significantly better than Shewhart control charts in small shift detection 

through an example from the chemical industry.  Hawkins (1981) extends the idea of 

CUSUM procedures for controlling the mean of the process to a procedure that will allow 

the engineer to chart the process variability and control the process variance.  Lucas et. al 

(1982) proposed the Fast Initial Response (FIR) for CUSUM which facilitates a more 

rapid response to an initial out of control condition than that of a standard CUSUM 

procedure  which helps in small shift detection.  They recommend FIR be used at start-up 

or after an out of control signal occurs because it has been proven to be most effective at 

these times.  ARL calculation methods for the CUSUM chart have been investigated by 

many researchers (Vance, 1986; Brook and Evans, 1972; Hawkins, 1992) and each offers 

their own approximation methods.  Design considerations for the CUSUM chart are 

visited by (Gan, 1991).  In this work Gan (1991) proposes a design strategy for CUSUM 

charts to easily determine the chart parameters of an optimal CUSUM chart. 

1.1.3 The EWMA Control Chart 

Another charting technique is the exponentially weighted moving average 

(EWMA) control chart.  The EWMA chart assigns weights to the previously observed 
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points in order to represent the process’s history.  The EWMA chart is set up so it assigns 

the largest weight to the most recent observation and assigns an exponentially decreasing 

weight to each subsequent older observation.  The parameter that must be established by 

the engineer is λ which is commonly called the smoothing constant.  The smoothing 

constant, λ, is established as the weight given to the most recent rational subgroup mean 

and the statistic decays in value from there with time.  The weights are set up so they sum 

to unity.  To see why the EWMA chart would be more effective in Phase II charting we 

compare the Shewhart chart methodology to the EWMA chart.  The Shewhart chart 

assigns a weight of 1 to the most recent observation and assigns a weight of zero to all the 

prior observations, so it effectively does not consider any of the prior observations since 

they are assigned a weight of zero instead of an exponentially decaying weight with age.   

Like the CUSUM chart the EWMA chart has been studied extensively in the 

Quality Engineering field.  Roberts (1959) introduced the ideas of what has become the 

EWMA chart by weighting the observations in geometric progression from the most 

recent observation and then comparing this technique against traditional moving average 

performance.  A procedure for numerical approximation of the ARL’s of EWMA charts 

was devised by Robinson et al (1978) by expressing the generation of successive EWMAs 

as an autoregressive process.  Crowder (1987) offered a more straight-forward less 

computationally intensive method for approximating ARL’s associated with EWMAs by 

using an integral equation approach.  Another advantage of EWMA charts is their 

robustness to non-normality.  Borror, Montgomery and Runger (1999) investigated the 

EWMA’s robustness to non-normality through an ARL performance comparison to the 

Shewhart individuals chart.  Crowder (1989) proposes design recommendations for 
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EWMA charts through plotting optimal smoothing parameters and control limit constants.  

Lucas and Saccucci (1990) propose a fast initial response feature for increased sensitivity 

for start-up problems and also propose a technique that combines Shewhart and EWMA 

schemes to detect both small and large shifts (Lucas & Saccuci, 1990). 

1.1.4 The Problem of In-Control Parameter Estimation 

A problem with all the control charting methods presented so far is the difficulties 

that arise from parameter estimation.  Parameter estimation is a step in Phase I of control 

charting that involves gathering enough samples to estimate the quality characteristic of 

interest.  Jensen et al. (2006) discusses the effects of parameter estimation extensively as 

it relates to control chart performance.  They showed that when the number of reference 

samples is small, control charts with estimated parameters result in a large bias and 

consequently decrease the sensitivity of the chart when detecting process shifts.  This 

presents a problem for Shewhart, EWMA, and CUSUM charts when short production runs 

are considered since using estimates in place of known parameters has been found to 

cause too many false alarms if sufficiently large in-control samples are not attained 

(Quesenberry, 1993; Jones et. al, 2001; Jones, 2004).  Large calibration samples can be 

costly and problematic and in very short production runs the engineer cannot establish 

parameter estimates in time in order to chart the process in its initial stages.  For an 

accurate parameter estimation the engineer requires a large number of in-control samples 

typically 25 or 30 calibration samples of size 4 or 5 each, which take a large amount of 

time to gather (Koning, 1997).  Since many engineering environments are dynamic and 

fast-paced with short production runs and many changeovers, it may not be feasible to 

wait long enough to collect a sufficient number of samples.  The engineer wants to 
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minimize the amount of parts that are produced before charting has begun and monitor 

the process starting from its initial stages so they can begin identifying and removing 

assignable causes earlier rather than later.   

The problem of investing significant time into parameter estimation in Phase I is 

resolved by what is called the self-starting control chart.  Self-starting charts update the 

process parameter of interest recursively with every new observation.  This allows the 

engineer to bypass the extensive sampling in the early stages of chart development which 

saves time and money and makes charting in short runs feasible.  Self-starting 

methodologies can be applied to any of the charts outlined previously.  For example, self-

starting Cumulative sum charts and self-starting EWMA charts have been utilized quite 

often in recent Quality literature.  Self-starting charts offer the advantage that they update 

the parameter estimates with the new observations and check the out of control 

conditions at the same time which is very desirable in developing any new charting 

methodologies. 

1.1.5 The Self-Starting Control Chart 

The self-starting control chart has many other advantages that improve the 

engineer’s ability to control a process.  One such advantage is the ability to chart in real 

time and essentially with the first units of production.  Charting in real time at the 

beginning of a manufacturing run allows the engineer to correct assignable causes sooner 

and prevent non-conforming units from being manufactured.  Another advantage related 

to parameter estimation is the ability to chart even when the exact in-control mean and 

standard deviation of the process are unknown.  By using a self-starting chart the 

engineer can still determine if a shift has occurred from the conditions obtained at process 
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startup without knowing the exact parameter values.  The chart uses the past observations 

to estimate the in-control process parameters. The estimation errors of the process 

parameters based on the limited past observations are taken into account appropriately 

when it decides if a new observation is out of control. 

The most basic self-starting methodology that we will focus on is the self-starting 

Q chart (Quesenberry, 1991).  Q charts are Shewhart-type self-starting chart techniques.  

The Q chart estimates the in-control process mean and variance by iteratively calculating 

the sample mean and variance based on the 𝑛 − 1 observations seen before it.  It can be 

shown that if the observations follow normal distribution, the statistic follows a t-

distribution, which can be further transformed into a standard normal distribution. So the 

points can be plotted on a standardized normal control chart (Quesenberry, 1991).  This 

transformed statistic is referred to as a Q-statistic and is obtained by utilizing the classical 

probability integral transformation Fisher (1930) and the conditional probability integral 

transformation O’Reilly (1973) to transform the original statistic into one that follows a 

standard normal distribution.   

We will now take a closer look at the major findings in self-starting chart 

literature.  Self-starting charts prove to be especially useful in the initial start-up phases 

as well as the short run production case when the exact value of the process parameters is 

not known.  Hawkins (1987) initially proposed a self-starting CUSUM scheme that 

utilizes two pairs of CUSUMs one for monitoring the location of the process and the 

other for monitoring the spread.  Quesenberry (1991) proposes the self-starting Q chart 

described earlier for both the mean and variance which applies transformations to the 

quality statistic so it can be plotted on standard normal control charts.  Quesenberry 
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(1995) extends upon his original Q chart methodology and proposes the CUSUM of Q 

statistic.  He et al (2008) proposes solutions for the bias of Shewhart Q charts that result 

when the out-of-control ARL is larger than the desired in-control ARL.  Q statistics and 

the Q statistics applied to the residuals of a time series model are investigated in 

Kawamura et. al (2013) which focuses on short runs and auto-correlated data.  Zantek 

(2006) offered an in depth analysis and improved design techniques for the CUSUM of Q 

statistics.    Design techniques for self-starting charts were also visited in depth by Jones 

(2002).  Since using parameter estimates with design procedures intended for known 

parameters can lead to worse charting performance Jones relaxes the assumption of 

known parameters and offers design procedures for the EWMA chart that improve the 

initial parameter-estimate charting performance.  

Tsiamyrtzis and Hawkins (2008) use a Bayesian sequentially updated framework 

combined with a EWMA formulation to detect jumps in the start-up phase.  The model 

process mean is represented as an autoregression with informative priors assumed from 

some prior information about the in-control process parameters.  Using the idea of 

informative priors is logical since in most SPC applications there is some prior known 

information that provides the engineer some intuition about the process before charting 

has begun (Tsiamyrtzis and Hawkins, 2008).  A self-starting control chart proposed by Li 

et al. (2010) also uses a EWMA procedure and combines it with likelihood ratio test to 

monitor the process mean and variance simultaneously when the process parameters are 

not known prior to start up. Capizzi and Masarotto (2012) develop what they call the 

ACUSCORE control chart which accounts for dynamic patterns in the process mean by 

utilizing an adaptive EWMA for a CUSCORE chart.   
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Thus far we have only looked at works that involve self-starting methodology in 

the univariate case.  However, if we wish to chart two related quality statistics such as 

inner and outer diameters of a type of parts from the process startup, multivariate self-

starting quality control charts are the best method. The multivariate case is discussed in 

several papers.  Hawkins et al (2007) develops a multivariate equivalent of univariate 

self-starting charts, when it is desired to monitor two or more related quality 

characteristics for location and scale.  Multivariate self-starting charts are also 

investigated by (Sullivan et al., 2002; Maboudou-Tchao et al., 2011; Capizzi et al., 2010). 

1.1.6 Control Charts for Linear Trend 

One noteworthy gap when considering the charting procedures we have outlined 

so far is that we have not considered the situation in which the process follows a linear 

trend as the in-control state.  Representing the relationship between explanatory variables 

and a response variable with a linear equation is a common practice in the Engineering 

sciences.  The engineer plots the explanatory variable against the response variable and 

models the relationship with a line of best fit that represents the expected value of the 

response variable at each level of the explanatory variable.  The slope and intercept 

parameters are often estimated by linear regression which commonly uses the method of 

least squares for parameter estimation.  Control charts for linear trends have been used to 

monitor such a process that assumes a specific linear trend in the in-control state, but 

none of these have incorporated self-starting methodologies.   As the process exhibits a 

different trend or a point significantly deviates from the expected trend of the process, the 

process can be considered out of control. 
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Charts intended for a linear trend in-control state are very useful for monitoring 

processes whose output can be approximated by a linear model.  Mansfield and Wein 

(1958) implemented a regression control chart that uses the residuals from a regression of 

cost on output that is able to detect days in which costs are unusually high or low.  

Mandel (1969) proposes a similar regression control chart to control a varying instead of 

a stable average of mail traffic in the postage industry.  Ling et al. (1990) propose a 

cumulative student t-statistic based on regression residuals to control a photolithographic 

work cell process that utilizes a feed forward control methodology to update parameter 

estimates.  Koksalan et al. (1999) propose a regression model using SPC methodologies 

for identifying missing independent variables in his beer demand study.  Shu et al. (2004) 

investigates the run length performance of the regression control chart with estimated 

parameters.  Zeng and Zhou (2007) use regression adjustment methods in monitoring 

multistage manufacturing processes by using the residuals from least squares linear 

regression.  Sulek (2008) proposes a regression control chart based on least absolute 

value regression and finds his method is more sensitive than the traditional least squares 

regression technique to process shifts.  There are several other charting applications that 

involve the use of linear models. 

Mahmoud and Woodall (2004) considered the case when a quality characteristic 

can be modeled by a linear function and proposed a multiple regression model with use 

of indicator variables in Phase I analysis.  Brown et al. (1975) studied how regression 

relationships change over time and proposed CUSUM and CUSUM of squares 

methodologies of recursive residuals to detect change in the original regression model.  

Bissell (1984) used CUSUMs to monitor linear trend in a target value and made ARL 
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determinations using a non-homogeneous Markov Chain approach to handle a transition 

matrix that changes over time.  Bissell warns about the accuracy of his ARL calculations 

and Gan (1992) proposes a numerical based method that generalizes the integral equation 

from Page (1954) and offers optimal design suggestions that improve the accuracy of the 

ARL estimation greatly.  Wasserman et al. (1993) adapts the traditional EWMA 

formulation to include an additional term to model linear trends and utilizes a Bayesian 

estimation framework which allows for the inclusion of prior process knowledge. 

Charting linear profiles is another related topic that has received recent attention 

and is discussed in Woodall et al. (2004) in great detail.  Linear profile monitoring is used 

to monitor data with multiple observations cycle by cycle instead of by individual 

observation.  Fahmy et al. (2006) proposes an MLE procedure for identifying the change 

point in processes subject to a linear trend that outperforms change point methods based 

on EWMA and CUSUM for estimating the actual drift time.  Zou et al. (2006) utilizes a 

sequential change-point formulation which allows for simultaneous updating parameters 

and evaluation of out of control conditions.  They then use the results proposed by 

Hawkins and Zamba (2005) to construct their chart with the maximal standardized 

likelihood ratio statistic, which they call the LRT chart that is able to detect shifts in the 

intercept, slope, and standard deviation of linear profiles.  Phase I applications of linear 

profiles were analyzed in Stover and Brill (1998) Mestek et al. (1994) and Mahmoud et 

al. (2007).  For phase II specific applications Kang and Albin (2000) propose two 

methods, the first involves a multivariate T2 chart based on least squares estimators of the 

intercept and slope and the second uses statistics based on the successive samples of n 

deviations from the in-control line.  Kim et al. (2003) proposed using the estimated 
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regression coefficients of a linear function from each sample to construct two separate 

EWMA charts, one for the slope and the other for the intercept.  

1.2 Motivation for our Methodology  

 The problem we wish to solve in this thesis is to design a self-starting control 

chart to monitor a process which follows a linear trend in its in-control state.  To the best 

of our knowledge, the self-starting chart for a process that exhibits a linear trend in its in-

control state has not been systematically studied in the literature.  A self-starting chart 

such as this will be useful for short-run processes where the observations follow a linear 

trend or change with an explanatory variable in its in-control state. Another important 

application of such a self-starting control chart is to monitor degradation signals. Imagine 

a degradation or deterioration process where the performance of a machine or process 

degrades following a specific linear trend in the in-control state.  In a typical degradation 

process the predicted linear equation only accurately represents the process in the early 

stages of its lifetime.  After significant degradation has set in, the degradation rate may 

become more rapid and the process will follow a different often more rapid trend.  Once 

the process has reached this more rapid degradation it is no longer considered in-control, 

and failure is typically imminent.  It would therefore be extremely useful to detect this 

drift away from the original estimated linear trend so the engineer can be alerted that 

failure due to degradation could be occurring.  For such degradation signals, historical 

data on the in-control state are not available. It is necessary to use a self-starting charting 

scheme to monitor the change of the degradation rate.  The goal of this thesis is to 

develop a self-starting control chart technique that will monitor a process with unknown 

in-control parameters at startup and a linear trend as its in-control state that will be able to 
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detect when the process shifts to the out of control state where the trend is significantly 

deviated from the in-control state.  We present three control charting methods to solve 

this problem: a Shewhart chart based on an extension of the Q-statistics to the cases of 

linear trends, a EWMA chart, and an improved EWMA chart implementing a delay 

parameter. 

In Chapter 2 we will provide the background knowledge necessary in order to 

understand the problem we wish to solve and our proposed methodologies.  In Chapter 3 

we will show our proposed methodologies for solving the linear trend detection problem, 

conduct a simulation study, and apply our charting methods to battery degradation data.  

Finally, in Chapter 4 we will discuss the findings from our results, offer a summary of the 

work we conducted, and lastly indicate opportunities for future work. 
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CHAPTER 2 BACKGROUND 

 A critical part of our solution lies within the ability to apply a self-starting 

methodology to our charting technique.  In SPC literature there have been several 

different self-starting schemes proposed.  One of the first and most proven of those is the 

self-starting Q chart (Quesenberry, 1991).  Quesenberry’s Q chart is a self-starting 

Shewhart-type control chart that has proven very useful because of its performance and 

simplicity.  In this work we adapt the Q statistic in order to detect shifts in the in-control 

linear trend a process follows. 

2.1 Q Chart Methodology 

Quesenberry’s Q chart allows for both the mean and variance of a process to be 

maintained from the start of production whether or not the value of the parameters is 

known prior to the run.  The Q chart utilizes the information from the previous 

observations to iteratively estimate the mean and standard deviation of the process after 

each observation.  The Q statistic follows the basic conventions of the standard Shewhart 

chart statistic by subtracting the mean from the current observation and dividing this 

difference by the standard deviation.   

 Due to estimation error when the in-control parameters are not known the statistic 

may not follow a standard normal distribution however, transformations such as the 

classic probability integral transformation can be applied which still preserves the 

information contained in the statistic but transforms it so it is normally distributed.  We 

will now describe the methodology along with the necessary assumptions in greater 

detail. 
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2.1.1 Assumptions and Essential Equations of the Q Chart 

Let 𝑋1, 𝑋2, … represent measurements from a process observed in time and assume 

these values are independently and identically distributed coming from a normal 

distribution with mean 𝜇 and variance 𝜎2.  Quesenberry considers four cases in which 

some of these parameters are known and others are unknown prior to the run.  When the 

in-control mean and variance are unknown prior to starting the run we must have a 

method for estimating them.  The sample mean and sample variance equations allow us 

to estimate the in-control mean Eq. (2-1) and variance Eq. (2-2) based on the previous 

observations.  The following equations are used in the development of the Q statistic and 

are our method for estimating the in-control mean and variance. 

 

𝑋̅𝑟 =
1

𝑟
∑𝑋𝑗

𝑟

𝑗=1

 
(2-1) 

 

𝑋̅𝑟 is the sample mean calculated after the 𝑟𝑡ℎ observation and 𝑋𝑗 is the 𝑗𝑡ℎ 

observation in j = 1… r.  Likewise the in-control variance is estimated by the sample 

variance equation. 

𝑆𝑟
2 =

1

𝑟−1
∑ (𝑋𝑗 − 𝑋̅𝑟)

2𝑟
𝑗=1   

 

(2-2) 

𝑆𝑟
2 represents the sample variance calculated after the 𝑟𝑡ℎ observation 𝑋𝑗 is the 

𝑗𝑡ℎ observation in j = 1… r.  Since control charting is an online process we make these 

calculations after every new observation is observed.  This can be tedious and potentially 

problematic if we have limited computing power.  Recursion is one method we can use in 

order to save computation time and improve calculation efficiency.  We present the 
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following equations that update the sample mean Eq. (2-3) and variance Eq. (2-4) 

iteratively using the findings from Youngs and Cramer (1971). 

𝑋̅𝑟 =
1

𝑟
[(𝑟 − 1)𝑋̅𝑟−1 + 𝑋𝑟],       𝑟 = 2, 3, … 

(2-3) 

 

𝑋̅𝑟−1 is the sample mean observed from the 1… r − 1 samples and its use in the 

equation above allows us to save computation time.  A similar idea is applied to 

recursively estimate the in-control process variance. 

𝑆𝑟
2 =

(𝑟 − 2)

(𝑟 − 1)
𝑆𝑟−1

2 +
1

𝑟
(𝑋𝑟 − 𝑋̅𝑟−1)

2,     𝑟 = 3, 4, … 

 

(2-4) 

Where 𝑆𝑟−1
2 represents the sample variance calculated from the 1… r − 1 samples.  

2.1.2 Q Statistic Derivation 

Quesenberry uses these estimates in formulating his Q statistics which follow a 

standard normal distribution.  The first case he considers is when the in-control mean and 

the variance are both known prior to process startup.  This first case is only possible 

when there have been enough observations to safely assume the in-control parameters are 

known.  He proposes the following Q statistic in Equation (2-5). 

𝑄𝑟(𝑋𝑟) =
(𝑋𝑟−𝜇0)

𝜎0
  (2-5) 

  

In order for the Q statistic to correctly be derived we require the  𝑋1…𝑋𝑟 to 

follow normal distribution as stated previously.  This will prove critical in the ability to 

identify the distribution that the Q statistic follows and will allow us to apply any 

necessary transformations in the later cases.  Since the Q chart is a standard normal 
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Shewhart-type chart we must show that this is in fact a standard normal statistic by 

checking both the expectation and variance. 

𝐸(𝑋𝑟 − 𝜇0) = 𝐸(𝑋𝑟) − 𝐸(𝜇0) =  𝜇0 − 𝜇0 = 0  

𝑉𝑎𝑟(𝑋𝑟 − 𝜇0) = 𝑉𝑎𝑟(𝑋𝑟) + 𝑉𝑎𝑟(𝜇0) − 2𝐶𝑜𝑣(𝑋𝑟 , 𝜇0) 

Since 𝜇0 is known we know the variance is equal to zero so the expression simplifies to 

𝑉𝑎𝑟(𝑋𝑟 − 𝜇0) =  𝜎0
2 

We then consider the variance of the statistic as a whole 

𝑉𝑎𝑟 (
𝑋𝑟 − 𝜇0
𝜎0

) =
1

𝜎0
2
𝑉𝑎𝑟(𝑋𝑟 − 𝜇0) =

1

𝜎0
2
𝜎0
2 = 1 

 Since we were able to show the numerator of the statistic follows normal 

distribution and the expectation was zero and variance is one we have proven the statistic 

follows standard normal distribution.  We next consider the situation that the mean is 

unknown but the variance is known.  He proposes the following statistic for this situation 

in Equation (2-6). 

𝑄𝑟(𝑋𝑟) = (
𝑟 − 1

𝑟
)

1
2 (𝑋𝑟 − 𝑋̅𝑟−1)

𝜎0
 

 

(2-6) 

It can be observed that this result is very similar to Equation (2-5) used for the 

case where both the in-control mean and variance were known.  One major difference is 

that instead of using 𝜇0 for the case in which the in-control mean is known we use 𝑋̅𝑟−1 

because we need to estimate the in-control process mean.  𝑋̅𝑟−1 is utilized because it is 

our best estimate of the in-control sample mean which we base on the 1…𝑟 − 1 

observations we have seen prior to the current 𝑟𝑡ℎ observation.  Another major difference 

that can be observed is the (
𝑟−1

𝑟
)

1

2
 term multiplied to the kernel of the statistic.  This 
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constant is a byproduct of the uncertainty introduced and is used to ensure the statistic 

still follows standard normal distribution even though parameter estimation is being used.  

We again calculate the mean and variance of the statistic to verify it follows a standard 

normal distribution and to determine the constant that must be applied to preserve this 

result. 

𝐸(𝑋𝑟 − 𝑋̅𝑟−1) = 𝐸(𝑋𝑟) − 𝐸(𝑋̅𝑟−1) = 𝐸(𝑋𝑟) − 𝐸(
1

𝑟 − 1
∑ 𝑋𝑗

𝑟−1

𝑗
) 

= 𝐸(𝑋𝑟) − (
1

𝑟 − 1
)𝐸 (∑ 𝑋𝑗

𝑟−1

𝑗
) = 𝜇0 − (

1

𝑟 − 1
)𝐸 (∑ 𝑋𝑗

𝑟−1

𝑗
) 

= 𝜇0 − (
1

𝑟 − 1
) 𝜇0(𝑟 − 1) = 0 

𝑉𝑎𝑟(𝑋𝑟 − 𝑋̅𝑟−1) = 𝑉𝑎𝑟(𝑋𝑟) + 𝑉𝑎𝑟(𝑋̅𝑟−1) − 2𝐶𝑜𝑣(𝑋𝑟 , 𝑋̅𝑟−1) 

The covariance term drops out since 𝑋𝑟 , 𝑋̅𝑟−1 are independent since 𝑋̅𝑟−1 does not 

include the observation 𝑋𝑟 and therefore their covariance is zero. 

𝑉𝑎𝑟(𝑋𝑟 − 𝑋̅𝑟−1) = 𝑉𝑎𝑟(𝑋𝑟) +  𝑉𝑎𝑟(
1

𝑟 − 1
∑ 𝑋𝑗

𝑟−1

𝑗
)

= 𝑉𝑎𝑟(𝑋𝑟) + (
1

𝑟 − 1
)
2

𝑉𝑎𝑟 (∑ 𝑋𝑗
𝑟−1

𝑗
)  

𝑉𝑎𝑟(𝑋𝑟) + (
1

𝑟 − 1
)
2

(∑ 𝑉𝑎𝑟(𝑋𝑗) +∑𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗)

𝑖≠𝑗

)
𝑟−1

𝑗
 

𝑉𝑎𝑟(𝑋𝑟) + (
1

𝑟 − 1
)
2

𝜎0
2(𝑟 − 1) = 𝜎0

2 +
𝜎0
2

𝑟 − 1
=  

𝜎0
2𝑟

𝑟 − 1
 

Now considering the variance of the entire statistic we get 

𝑉𝑎𝑟 (
𝑋𝑟 − 𝑋̅𝑟−1

𝜎0
) =  

1

𝜎0
2
𝑉𝑎𝑟(𝑋𝑟 − 𝑋̅𝑟−1) =

1

𝜎0
2

𝜎0
2𝑟

𝑟 − 1
=

𝑟

𝑟 − 1
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In order for this statistic to have a variance of one we have to multiply the inverse 

of 
𝑟

𝑟−1
 to arrive at the result for the unknown in-control process mean but known in-

control process variance.  Then in order to standardize the statistic we divide by the 

standard deviation so we must take the square root of the expression which gives us 

(
𝑟−1

𝑟
)

1

2
.  After determining the constant that allows for preservation of the normally 

distributed statistic we develop Equation (2-6).   

We then consider two cases in which the in-control variance is unknown.  The 

first of which is when the in-control process mean is known but the in-control process 

variance is not.  When the in-control process variance is unknown we must estimate its 

value using the sample variance equation.  The in-control process variance is calculated 

by using our best estimate of the in-control variance which is the sample variance based 

on the 1…𝑟 − 1 historical observations seen before the current 𝑟𝑡ℎ observation.  The 

statistic in Equation (2-7) is used in this situation. 

𝑄𝑟(𝑋𝑟) = 𝛷
−1 {𝐺𝑟−1 (

𝑋𝑟 − 𝜇0
𝑆0,𝑟−1

)}        𝑟 = 2, 3, … 

 

(2-7) 

Where 𝑆20,𝑟 =
1

𝑟
∑ (𝑋𝑗 − 𝜇0)

2𝑟
𝑗=1  

 Notice here that the statistic has again taken on a different form.  In the case of 

unknown in-control process variance we introduce a distribution transformation 𝐺𝑟−1 

which represents the t-distribution function with 𝑟 − 1 degrees of freedom.  Since the 

sample variance equation is used in the denominator of our statistic when the variance is 

unknown it changes the distribution of the statistic.  The numerator still follows a normal 

distribution but the denominator is no longer a constant and is now a random variable 
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since the in-control process variance is unknown.  Since we utilize the sample variance 

equation that is derived from the summation of independent squared normal random 

variables we find that the denominator follows chi-square distribution.  Because of this 

numerator and denominator combination we suspect that our statistic follows a t-

distribution.  We find that this is in fact the case and we apply the 𝐺𝑟−1 transformation 

which turns our t-distributed random variable with 𝑟 − 1 degrees of freedom into 

something we can transform into a standard normal statistic with the use of 𝛷−1 the 

inverse of the standard normal distribution function.  We will show these distribution 

results more closely in our discussion of Case IV.     

We now consider the most relevant case to self-starting applications, the case 

when both the in-control process mean and in-control process variance are unknown.  

This is the most common situation since in the case of short runs or data collection 

limitations a prime motivation for self-starting charts is to solve the problem of not 

knowing the process parameters prior to charting.  Equation (2-8) is the statistic proposed 

for the situation in which both the in-control mean and variance are unknown.  Because 

of this, the statistic must utilize both the constant and the distribution transformation in 

order to ensure the statistic follows standard normal distribution. 

𝑄𝑟(𝑋𝑟) = 𝛷
−1 {𝐺𝑟−2 [(

𝑟 − 1

𝑟
)

1
2
(
𝑋𝑟 − 𝑋̅𝑟−1
𝑆0,𝑟−1

)]}        𝑟 = 3, 4, … 

 

(2-8) 

We now show the derivation of this statistic in detail.  Quesenberry suspects that  

(
𝑋𝑟−𝑋̅𝑟−1

𝑆0,𝑟−1
) follows a t-distribution and writes the statistic above in a different fashion in 

order to more easily identify its distribution.  In order for this statistic to follow a t-
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distribution with 𝜈 degrees of freedom it must first take on the form of 𝑇 =
𝑍

√
𝑈

𝜈

 where 𝑍 is 

a standard normal random variable, and 𝑈 follows a chi-square distribution.  In addition, 

𝑍 and 𝑈 must be independent.  We can express the statistic in the following way to show 

it follows a t-distribution. 

𝑍 = (
𝑟 − 1

𝑟
)

1
2
(
𝑋𝑟 − 𝑋̅𝑟−1

𝜎𝑟
) 

𝑈 =
(𝑟 − 2)𝑆𝑟−1

2

𝜎𝑟
2

 

𝜈 = 𝑟 − 2 

Which takes on the same form as before when written in this way. 

𝑇 =
(
𝑟 − 1
𝑟 )

1
2
(
𝑋𝑟 − 𝑋̅𝑟−1

𝜎𝑟
)

√
(𝑟 − 2)𝑆𝑟−1

2

(𝑟 − 2)𝜎𝑟
2

= (
𝑟 − 1

𝑟
)

1
2
(
𝑋𝑟 − 𝑋̅𝑟−1
𝑆𝑟−1

) 

We proved previously that 𝑍 follows a standard normal distribution with expectation zero 

and variance one.  We must now show that 𝑈 follows a chi-square distribution with 𝜈 

degrees of freedom.  For a chi-square distribution we need 𝑍1, … , 𝑍𝑘 independent 

standard normal random variables.  Then we can write the sum of squares in this way. 

𝑄 = ∑ 𝑍𝑖
2𝐾

𝑖=1   𝑄~𝜒𝑘
2 

We then consider the sample variance Equation (2-2) and the best estimate of the 

variance at time 𝑟 which is the sample variance at time 𝑟 − 1. 

 Quesenberry (1991) uses the best estimate of the sample variance in the case of 

unknown variance which is based on the 1,2,… 𝑟 − 1 observations. 
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𝑆𝑟−1
2 =

1

𝑟 − 2
∑(𝑋𝑗 − 𝑋̅𝑟−1)

2

𝑟−1

𝑗=1

 

 

(2-9) 

A commonly used result in statistics tells us that the sample mean is independent 

of the sample variance.  Since 𝑆𝑟−1
2 is composed of the sum of independent standard 

normal random variables it can be concluded that it follows chi square distribution with 

𝑟 − 2 degrees of freedom.  After verifying that the statistic developed thus far follows a t-

distribution we now know the appropriate transformation to apply in order to ensure the 

statistic follows standard normal distribution.  In order to get the statistic in a form that 

can be transformed to standard normal we apply the student t-distribution function which 

will transform the statistic into a probability value.  Now that this statistic is simplified 

into simply a probability value we can apply the inverse of the standard normal 

distribution function to put the statistic in terms of a quantile of the standard normal 

distribution. 

2.1.3 Independence among Q Statistics 

 A desirable property of charting statistics in SPC is independence among 

observations.  Ideal charting performance and accuracy can be reached when the 

independence of statistics can be attained.  Quesenberry was able to show the 

independence of his Q statistic between observations.  He shows this result through the 

use of two lemmas in the proof presented below.  Let 𝑌1 and 𝑌2 be independent chi–

square random variables with degrees of freedom 𝜈1 and 𝜈2 respectively.  Then we can 

conclude that the ratio 𝑌1 𝑌2⁄  and the sum 𝑌1 + 𝑌2 are independent random variables.   
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 The second lemma shown states that if 𝑌𝑖 for 𝑖 = 1,2,3 are independent chi-square 

random variables with 𝜈𝑖 degrees of freedom then  

𝑊1 =
𝜈2𝑌1
𝜈1𝑌2

 

𝑊2 = 𝑌1 + 𝑌2 

𝑊3 =
𝜈1 + 𝜈2
𝜈3

𝑌3
𝑌1 + 𝑌2

 

Are independent 𝐹𝜈1,𝜈2 and 𝐹𝜈3,𝜈1+𝜈2 random variables where 𝐹𝜈1,𝜈2 represents the 

F-distribution function with numerator degrees of freedom 𝜈1 and denominator degrees 

of freedom 𝜈2.  Using conclusions made from Lemma 1 it is easily shown that 𝑊1 and 

𝑊2 are independent F random variables.   𝑊1 is independent of 𝑌1 + 𝑌2 and since 𝑊1 is 

also independent of 𝑌3 it is independent of any function of 𝑌3 and 𝑌1 + 𝑌2. 

 Using the two lemmas proposed Quesenberry (1991) defines the following 

quantities. 

𝑌1 =
1

𝜎2
∑(𝑋𝑖 − 𝑋̅𝑟−1)

2

𝑟−1

𝑖=1

 

𝑌2 = (
𝑟 − 1

𝑟
)
(𝑋𝑟 − 𝑋̅𝑟−1)

2

𝜎2
 

𝑌3 = (
𝑟

𝑟+1
)
(𝑋𝑟+1−𝑋̅𝑟)

2

𝜎2
 (1991) shows the independence of 𝑌1 and 𝑌2 

𝐶𝑜𝑣(𝑋𝑖 − 𝑋̅𝑟−1, 𝑋𝑟 − 𝑋̅𝑟−1) 

= 𝐸[(𝑋𝑖 − 𝑋̅𝑟−1)( 𝑋𝑟 − 𝑋̅𝑟−1)] 

= 𝐸(𝑋̅𝑟−1 − µ
2) − 𝐸[(𝑋𝑖 − µ)( 𝑋̅𝑟−1 − µ)] 

=
𝜎2

𝑟 − 1
−

𝜎2

𝑟 − 1
= 0 
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Since (𝑋𝑖 − 𝑋̅𝑟−1) and (𝑋𝑟 − 𝑋̅𝑟−1) are normal, zero covariance proves independence.  

The other pairs can be shown to be independent following similar logic. 

𝐴𝑟
2 =

(𝑟 − 2)𝑌2
𝑌1

= (
𝑟 − 1

𝑟
)
(𝑋𝑟 − 𝑋̅𝑟−1)

2

𝑆𝑟−1
2  

𝐴𝑟+1
2 =

(𝑟 − 1)𝑌3
𝑌1 + 𝑌2

= (
𝑟

𝑟 + 1
)
(𝑋𝑟+1 − 𝑋̅𝑟)

2

𝑆𝑟
2  

 Quesenberry (1991) continues his application of the second Lemma presented 

earlier to show that 𝐴𝑟 and 𝐴𝑟+1 are independent.  It can also be seen that 𝐴𝑟 and 𝐴𝑟+1 

follow t-distribution so therefore 𝑄𝑟 and 𝑄𝑟+1 are independent standard normal random 

variables from the probability integral transformation.  It is important to notice the 

different ranges for the Q statistic corresponding to each of the different cases.  In case I 

both of the in-control parameters are known so the estimates do not have to be used.  

Since these are both known the 𝑄1 for 𝑋1 can be obtained.  However, when looking at 

cases II and III it can be seen that because of estimation of the parameters the range of the 

statistic becomes limited to 𝑟 = 2,3… so the 𝑄1 for 𝑋1 cannot be calculated.  In case four 

when we have two unknown parameters the range becomes 𝑟 = 3,4…  because of 

estimation meaning we cannot calculate values for 𝑄1 for 𝑋1 or 𝑄2 for 𝑋2.  This result 

can be generalized.  If 𝑝 represents the number of unknown parameters then we obtain 

the Q statistics starting with 𝑄𝑝+1. 

 After the Q statistic values have been calculated they can then be plotted on a 

Shewhart control chart.  The Shewhart control chart will utilize control limits at ±3 since 

our statistic follows a standard normal distribution. 
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2.2 Linear Regression Model 

In order to solve our problem we model the in-control state of the process as a 

linear trend rather than the traditional stable average.  We model this non-stable mean 

using a linear least squares simple regression model.  We now offer an explanation of the 

basic concepts of linear regression. 

 For our application we consider a linear regression model with a single predictor 

which is commonly known as simple linear regression.  We have a pair (𝑥𝑖,𝑦𝑖) for each 

1,2…𝑛 observation and we model the relationship of these 𝑛 observations in Equation 

(2-10).  

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖,  𝑖 = 1,2, … , 𝑛 (2-10) 

 

Where 𝛽0 is the intercept parameter and 𝛽1 represents the slope parameter.  For 

standard linear regression analysis we have assumptions about the explanatory term and 

the error term 𝜀𝑖.  The first regards the regressor variable 𝑥𝑖.  The regressor variable is 

under the experimenter’s control so the 𝑥𝑖′𝑠 are not random variables and can be taken as 

constants.  Secondly, the error term has expectation zero which implies the expectation of 

the response variable is  𝛽0 + 𝛽1𝑥𝑖.  Another assumption regarding the error term is that 

its variance is constant meaning that the variance of the response variable at any 

observation is the same as at all the other times.  Lastly, the errors at each time are 

independent of one another which also implies this same independence amongst the 

response variables at any given time observation.  The ultimate goal of linear regression 

is to establish a relationship between the response and the explanatory variable that will 

give us predicting ability for future observations which we will be helpful to us in solving 

our problem. 
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2.2.1 Regression Parameter Estimation 

 The regression parameters 𝛽0 and 𝛽1 hold much of the predictive power in our 

linear model.  𝛽0 is the intercept parameter and 𝛽1 represents the slope parameter.  These 

parameters are often not known in practice and therefore must be estimated.  There are 

two common ways that parameters are estimated in linear regression, maximum 

likelihood estimation and least squares estimation.  The maximum likelihood estimation 

selects parameters based on maximizing the likelihood function for the parameters.  

However, we will focus more heavily on the least squares estimation in this work.  The 

least squares method uses the squared distance as a measure of closeness and minimizes 

the function below to estimate the intercept and slope parameters. 

𝑆(𝛽0, 𝛽1) =∑(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)
2 

(2-11) 

 

 From taking the derivative of this function with respect to 𝛽0 and 𝛽1 and setting it 

equal to zero we obtain the equations to estimate 𝛽0 and 𝛽1.   

𝛽̂1 = 
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

∑(𝑥𝑖 − 𝑥̅)
2

 

 

(2-12) 

𝛽̂0 = 𝑦̅ − 𝛽̂1𝑥̅ (2-13) 

 

We pay close attention to the residual in later results.  The residual is the vertical 

distance between the observation 𝑦𝑖 and the estimated line evaluated at 𝑥𝑖.  Another 

useful least squares estimation is the mean square error (MSE) which is the unbiased least 

squares estimate of the standard deviation.   

𝑀𝑆𝐸 = 𝑠2 =
𝑆(𝛽̂0, 𝛽̂1)

𝑛 − 2
 

(2-14) 
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2.2.2 Distributions of the Parameter Estimates 

Since we will be constructing a statistic involving the parameter estimates it is 

important to establish the distributions of these random variables.  We consider the 

distribution of the following quantities to aid in our future analysis.  𝛽̂1 is an unbiased 

estimate of 𝛽1 and has been found to follow a normal distribution 𝛽̂1 ~ 𝑁(𝛽1, 𝜎
2 𝑠𝑥𝑥)⁄ .  

Because  𝛽̂0 = 𝑦̅ − 𝛽̂1𝑥̅ is a linear combination of normal random variables it to is 

normally distributed 𝛽̂0 ~ 𝑁 (𝛽0, 𝜎
2 [

1

𝑛
+

𝑥̅2

𝑠𝑥𝑥
]). 

In order to monitor our in-control linear trend we wish to represent the trend in 

terms of a single value to preserve simplicity and interpretability in our statistic.  This can 

be accomplished by writing the relationship in terms of the estimated response.  We 

define the quantity µ̂0 = 𝛽̂0 + 𝛽̂1𝑥0 which is the estimated value of the response variable 

at 𝑥0 based on the least squares parameter estimates of the regression parameters.  We 

consider the mean and variance for µ̂0. 

𝐸(µ̂0) =  𝛽0 + 𝛽1𝑥0 = µ0 

 Therefore µ̂0 is an unbiased estimator for µ0.  We then look at the variance of µ̂0. 

𝑉𝑎𝑟(µ̂0) =  𝜎
2 [
1

𝑛
+
(𝑥0 − 𝑥̅)

2

𝑠𝑥𝑥
] 

 Where 𝑠𝑥𝑥 is the sum of squares x and is calculated in the following way. 

𝑠𝑥𝑥 =∑(𝑥𝑖 − 𝑥̅)
2 

 From these results we can say that µ̂0 ~ 𝑁 (µ0, 𝜎
2 [

1

𝑛
+
(𝑥0−𝑥̅)

2

𝑠𝑥𝑥
]).  

In this work we will also use the vector interpretation of the linear regression results 

presented above.  Using matrix operations can often times be easier than dealing with all 
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scalar quantities.  In addition to its potential ease of use the vector notation of the 

regression model is necessary when dealing with multiple regression which is the 

situation in which we want to predict the value of a variable based on two or more 

regressor variables.  We can then model our regression relationship using vectors as 

shown in Equations (2-15) through (2-17). 

𝑦 = 𝑋𝛽 + 𝜀 (2-15) 

 

X is what is known as the design matrix in which the first column is a column of ones for 

the intercept term in the model.  𝛽 is the vector of regression parameter estimates and 𝜀 is 

once again the error term.  The 𝛽 matrix can be estimated using the following matrix 

operations which results in the least squares estimate of 𝛽. 

𝛽̂ = (𝑋′𝑋)−1𝑋′𝑦 (2-16) 

 

𝛽̂ is an unbiased estimator of 𝛽 and the variance of the estimated parameter matrix is 

shown below. 

𝑉𝑎𝑟(𝛽̂) = (𝑋′𝑋)−1𝜎2 (2-17) 
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CHAPTER 3 PROPOSED METHODOLOGY 

3.1 Problem Formulation 

Let 𝑌1, 𝑌2…𝑌𝑡 represent measurements collected in time sequence that are 

independently and identically distributed having been collected from a normal 

distribution.  We will utilize the information from these observations to help us in 

estimating regression parameters to monitor a process that follows an in-control linear 

trend using a Q chart methodology.  In order to set the stage for our Q chart we consider 

the explanatory variable 𝑋𝑡 which is the value of the independent variable at time 𝑡.  

Correspondingly, 𝑌𝑡 is the response variable in our linear model at time 𝑡.  We use the 

model developed from simple linear regression to describe the relationship between our 

independent and dependent variable in equation (3-1). 

𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝜖𝑡 (3-1) 

 

where  

 

𝜖𝑡~𝑁(0, 𝜎
2) 

 

In this thesis, 𝑋𝑡 = 𝑡 so that Eq. (3-1) is corresponding to a linear trend.  The above 

regression equation is used to represent the in-control state of the degradation process.  

𝛽0 represents the y-intercept of the model and 𝛽1 represents the slope.  However, we 

frequently do not know the value of the in-control parameters prior to starting the run so 

we must estimate the regression parameters 𝛽0, 𝛽1, and 𝜎.  The method we will use for 

parameter estimation in our linear regression is least squares estimation.  The following 

equations Eq. (3-2) and Eq. (3-3) allow for calculation of the least squares estimates of 𝛽0 

and 𝛽1 at time t. 

𝛽̂1
(𝑡)
= 
∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)
𝑡
𝑖=1

∑ (𝑋𝑖 − 𝑋̅)
2𝑡

𝑖=1

 
(3-2) 
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𝛽̂0
(𝑡)
= 𝑌̅ − 𝛽̂1𝑋̅ (3-3) 

 

These estimates can then be used to predict the value of the observations 𝑌𝑡 at 

time 𝑡, which is given by 

𝑌̂𝑡 = 𝛽̂0
(𝑡)
+ 𝛽̂1

(𝑡)
𝑋𝑡 where t=1,2… 

We also wish to estimate the in-control variance when the value of the parameters 

is not known prior to starting the run.  This estimation is based on the mean squared error 

(MSE) in linear regression analysis and is shown below in Eq. (3-4). 

𝑀𝑆𝐸𝑡 = 𝑠𝑡
2 =

𝑆(𝛽̂0
(𝑡)
, 𝛽̂1

(𝑡)
)

𝑡 − 2
 

(3-4) 

Where 

𝑆(𝛽̂0
(𝑡)
, 𝛽̂1

(𝑡)
) =∑(𝑌𝑖 − 𝛽̂0

(𝑡)
− 𝛽̂1

(𝑡)
𝑋𝑖)

2

𝑡

𝑖=1

 

(3-5) 

 

3.2 Extension of the Q Statistic to Linear Trend Data 

We showed in chapter 2 that, if the in-control data have a constant mean, 

Quesenberry (1991) develops his Q statistic at current time t by subtracting the best 

estimate of the in-control process mean and dividing that quantity by the best estimate of 

the standard deviation based on the previous observations.  We will follow a similar idea 

to extend the Q statistics for in-control state with linear trends.  In our model, 𝑌̂𝑡−1 =

𝛽̂0
(𝑡−1)

+ 𝛽̂1
(𝑡−1)

𝑋𝑡 will be used to replace the estimate of the in-control process mean 

and 𝑠𝑡−1 is our best estimate of the in-control standard deviation when neither parameter 

is known prior to starting the run. 
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For self-starting charts the idea of using a predicted value in our statistic stems 

from the thought that the current value, which may be out of control, potentially 

contaminates our estimate of the in-control state.  We hypothesize that if the performance 

of the chart improves when a predicted value based on the 𝑡 − 1 observations is used that 

the effects of contamination will be even further reduced if we introduce a greater delay.   

Up to this point we have discussed the case where the predicted value of 𝑌𝑡 is based on 

the 1,… 𝑡 − 1 previous observations, 𝑌̂𝑡−1.  Following this idea we would like to 

introduce some new notation.    The observations up to time t-d are used to estimate the 

in-control parameters and predict the observation at time t, 𝑌𝑡, which is the d-step ahead 

prediction at time t-d, denoted by 𝑌̂𝑡−𝑑(𝑑). It is easy to see 

𝑌̂𝑡−𝑑(𝑑) = 𝛽̂0
(𝑡−𝑑)

+ 𝛽̂1
(𝑡−𝑑)

𝑋𝑡 
(3-6) 

 

The parameter 𝑑 ≥ 1 is called delay parameter in this thesis and the corresponding Q 

statistics are called Q statistics with delay d.   

The first case we visit is when the in-control process mean is unknown but the in-

control process variance is known.  In this case we only have to estimate the in-control 

process mean and the in-control process variance is considered a known constant.  Like 

we showed in Eq. (2-6) a constant must be multiplied to our statistic in order to preserve 

the standard normal distribution of the Q statistic.  Below we show our statistic for our 

first case with in-control process mean unknown and in-control process variance known 

that incorporates the aforementioned constant.  

3.2.1 The Case of Unknown in-control Mean and Known Standard Deviation  

Case I: µ unknown and σ known 
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When the in-control variance is known, we propose the following extended Q 

statistics with delay d at time t: 

𝑄𝑡(𝑌𝑡; 𝑑) =  
1

[[
𝑡

𝑡 − 𝑑
+ 

(𝑋𝑡 − 𝑋̅𝑡−𝑑)
2

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

]]

1
2

 
𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)

𝜎
 

(3-7) 

 

for 𝑡 = 2 + 𝑑, 2 + 𝑑 + 1,… 

 We will now show the distribution of the statistic in Eq. (3-7) follows a standard 

normal distribution.  That is, 𝑄𝑡(𝑌𝑡; 𝑑)~𝑁(0,1 ).  We begin the derivation of the Case I 

statistic with the following kernel. 

𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)

𝜎
 

 

The ultimate goal of our quality statistic is to have the ability to chart our in-

control linear trend on a standardized Shewhart Chart by using Q chart methodologies.  

In order to show this expression can be transformed into a standardized normal Q statistic 

we must first show that it has zero mean and σ2 = 1.  This is shown here. 

 

𝐸(𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)) = 𝐸(𝑌𝑡) − 𝐸(𝑌̂𝑡−𝑑(𝑑)) 

= 𝐸(𝛽0 + 𝛽1𝑋𝑡 + 𝜖𝑡) − 𝐸(𝛽̂0
(𝑡−𝑑)

+ 𝛽̂1
(𝑡−𝑑)

𝑋𝑡) 
= 𝛽0 + 𝛽1𝑋𝑡 − 𝛽0 + 𝛽1𝑋𝑡 = 0 

 

Since the numerator is zero we have proven that the mean of the statistic is zero.  

We then calculate the variance of the numerator to verify that it in fact equals one. 

 

𝑉(𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)) = 𝑉(𝑌𝑡) + 𝑉(𝑌̂𝑡−𝑑(𝑑)) − 2𝑐𝑜𝑣(𝑌𝑡 , 𝑌̂𝑡−𝑑(𝑑)) 
 

It is easy to see 𝑐𝑜𝑣(𝑌𝑡 , 𝑌̂𝑡−𝑑(𝑑))  =  0, since 𝑌𝑡 is the response at time 𝑡 and 𝑌̂𝑡−𝑑(𝑑) is 

the estimated response at 𝑡 which only includes time up to time 𝑡 − 𝑑 and not 𝑌𝑡.  

Therefore, this means that 𝑌𝑡 is independent of 𝑌̂𝑡−𝑑(𝑑) and that 𝑐𝑜𝑣(𝑌𝑡 , 𝑌̂𝑡−𝑑(𝑑)) =  0.  



36 
 

𝑉(𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)) = 𝑉(𝑌𝑡) + 𝑉(𝛽̂0
(𝑡−𝑑)

+ 𝛽̂1
(𝑡−𝑑)

𝑋𝑡) 

= 𝜎2 + 𝑉(𝑦̅𝑡−1 − 𝛽̂1
(𝑡−𝑑)

𝑋̅𝑡−𝑑 + 𝛽̂1
(𝑡−𝑑)

𝑋𝑡) 

= 𝜎2 + 𝑉(𝑦̅𝑡−1 − 𝛽̂1
(𝑡−1)

(𝑋𝑡 − 𝑋̅𝑡−1)) 

𝛽̂1
(𝑡−𝑑)

=
∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)𝑦𝑖
𝑡−𝑑
𝑖=1

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

 

We substitute 𝛽̂1
(𝑡−𝑑)

=
∑ (𝑋𝑖−𝑋̅𝑡−𝑑)𝑦𝑖
𝑡−𝑑
𝑖=1

∑ (𝑋𝑖−𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

 into the equation and factor the 

summation out front in order to simplify our calculation of the variance. 

 

𝑉(𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)) = 𝜎
2 + 𝑉 (∑{

𝑦𝑖
𝑡 − 𝑑

𝑡−𝑑

𝑖=1

+ (𝑋𝑡 − 𝑋̅𝑡−𝑑)
(𝑋𝑖 − 𝑋̅𝑡−𝑑)𝑦𝑖

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

}) 

= 𝜎2 + 𝑉 (∑{
1

𝑡 − 𝑑

𝑡−𝑑

𝑖=1

+
(𝑋𝑖 − 𝑋̅𝑡−𝑑)(𝑋𝑡 − 𝑋̅𝑡−𝑑)

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

}𝑦𝑖) 

We then define 

𝐶𝑖 = (
1

𝑡 − 𝑑
+
(𝑋𝑖 − 𝑋̅𝑡−𝑑)(𝑋𝑡 − 𝑋̅𝑡−𝑑)

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

) 

𝑉(𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)) =  𝜎
2 + 𝑉(∑ 𝐶𝑖

𝑡−𝑑
𝑖=1 𝑦𝑖)  

𝑉(𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)) =  𝜎
2 + ∑𝐶𝑖

2

𝑡−1

𝑖=1

𝜎2 

 

= 𝜎2 [[
𝑡

𝑡 − 𝑑
+

(𝑋𝑡 − 𝑋̅𝑡−𝑑)
2

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

]] 

 

A full derivation of this is included in the appendix of this thesis.  In order to 

standardize our statistic we must divide by the standard deviation.  Following this thought 

we take the square root of the quantity shown above to get the following. 

 

𝑆. 𝐷. (𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)) = 𝜎 [[
𝑡

𝑡 − 𝑑
+

(𝑋𝑡 − 𝑋̅𝑡−𝑑)
2

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

]]

1
2
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We can then use this result in our statistic to form a standardized Q statistic.  As 

mentioned before we must multiply the statistic by a constant to ensure that it follows 

standard normal distribution.  We multiply by the reciprocal of the constant above for this 

reason.  

 

𝑍 =  
1

[[
𝑡

𝑡 − 𝑑
+ 

(𝑋𝑡 − 𝑋̅𝑡−𝑑)
2

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

]]

1
2

 
𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)

𝜎
 

 

Now we must verify that this is a standard normal statistic.  So far we know it is 

normally distributed and that the expectation is zero from our previous results.  We must 

check the variance of the statistic to verify that it in fact has variance one. 

 

𝑉(𝑍) =  𝑉

(

 
 
 
 

1

[[
𝑡

𝑡 − 𝑑
+ 

(𝑋𝑡 − 𝑋̅𝑡−𝑑)
2

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

]]

1
2

 
𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)

𝜎

)

 
 
 
 

 

 

= 
1

[[
𝑡

𝑡 − 𝑑
+ 

(𝑋𝑡 − 𝑋̅𝑡−𝑑)
2

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

]]

1

𝜎2
𝑉( 𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)) 

 

By substituting the value of 𝑉( 𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)) found earlier 

 

𝑉(𝑍) =
1

[[
𝑡

𝑡 − 𝑑
+ 

(𝑋𝑡 − 𝑋̅𝑡−𝑑)
2

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

]]

1

𝜎2
∗ 𝜎2 [[

𝑡

𝑡 − 𝑑
+

(𝑋𝑡 − 𝑋̅𝑡−𝑑)
2

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

]] = 1 

 

So since 𝑉(𝑍) = 1 and 𝐸(𝑍) = 0 this is a standard normal statistic and we have 

verified that the statistic proposed in case I is in fact a standardized Q statistic. 
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3.2.2 The Case of Unknown in-control Mean and Unknown Standard Deviation 

We then extend our analysis of case I to case II: µ and σ2 unknown.  For case II 

we must estimate the in-control process variance in addition to the in-control process 

mean which will make it more difficult to transform our statistic into a standard normal Q 

statistic.  In case II since σ2 is unknown we must estimate this value.  The traditional 

method for estimating σ2 in simple linear regression is to calculate the mean square error 

(MSE) s2 by taking the residual sum of squares and dividing by the error degrees of 

freedom.  Below is the equation for the MSE (s2) that we have generalized for our delay 

parameter d. 

𝑀𝑆𝐸𝑡−𝑑 = 𝑠𝑡−𝑑
2 =

𝑆(𝛽̂0
(𝑡−𝑑)

, 𝛽̂1
(𝑡−𝑑)

)

𝑡 − 2 − 𝑑
 

(3-8) 

Where  

𝑆(𝛽̂0
(𝑡−𝑑)

, 𝛽̂1
(𝑡−𝑑)

) =∑(𝑦𝑖 − 𝛽̂0
(𝑡−𝑑)

−  𝛽̂1
(𝑡−𝑑)

𝑥𝑖)
2

𝑡−𝑑

𝑖=1

 

(3-9) 

 

We now have established the in-control parameters and we must estimate and 

propose the following statistic for our case II. 

Case II: µ and σ2 unknown 

𝑄𝑡(𝑌𝑡; 𝑑) =  𝛷
−1

{
  
 

  
 

𝐺𝑡−2−𝑑

[
 
 
 
 
 
 

1

[[
𝑡

𝑡 − 𝑑
+ 

(𝑋𝑡 − 𝑋̅𝑡−𝑑)
2

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

]]

1
2

 
𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)

𝑠𝑡−𝑑

]
 
 
 
 
 
 

}
  
 

  
 

 

 

(3-10) 

for 𝑡 = 3 + 𝑑, 3 + 𝑑 + 1… 

We note that in the above statistic that the prediction of 𝑌𝑡 with a delay of d,  

𝑌̂𝑡−𝑑(𝑑), is calculated based on observations 1 through 𝑡 − 𝑑 (not including time t).  𝑠𝑡−𝑑 
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is our estimate of the standard deviation based on the first 𝑡 − 𝑑 observations.  Since in 

case II we do not know the value of the in-control process variance our best estimate of 

σ2 becomes 𝑠𝑡−𝑑
2 and therefore we divide by its square root to standardize our statistic.  

Notice that in addition to multiplying by the same constant derived for Case I we also 

have a distribution transformation.  This distribution transformation becomes necessary 

when 𝑠𝑡−𝑑 is used because it makes the inner quantity follow t-distribution like what was 

discussed in chapter 2.  𝐺𝑡−2−𝑑 represents the student t-distribution function with 𝜈 = 𝑡 −

2 − 𝑑 degrees of freedom and is used here to evaluate our t-distributed statistic as a 

probability value.  After doing this we still need our statistic to be expressed in a form we 

can plot on a standard normal Shewhart-type control chart.  We accomplish this through 

also utilizing the inverse of the standard normal distribution, 𝛷−1, which transforms our 

statistic into a standard normal quantile value.  We will now offer a more detailed look 

into our proposed statistic for Case II: unknown in-control process mean and variance. 

We apply a similar idea to formulate our statistic in Case II as we did for Case I.  

We begin with our statistic from case I but make one substitution.  Since we do not know 

the value of the in-control process standard deviation we replace 𝜎 with 𝑠𝑡−𝑑.  

[
 
 
 
 
 
 

1

[[
𝑡

𝑡 − 𝑑
+ 

(𝑋𝑡 − 𝑋̅𝑡−𝑑)
2

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−1

𝑖=1

]]

1
2

 
𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)

𝑠𝑡−𝑑

]
 
 
 
 
 
 

 

Because of the general form this expression takes we suspect it may follow a t-

distribution since the denominator has been proven to follow chi-square.  So we will try 
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to prove that it in fact follows t-distribution.  We then represent its components in the 

following way for ease in identifying its distribution. Define 

 

𝑍 =  
1

[[
𝑡

𝑡 − 𝑑
+ 

(𝑋𝑡 − 𝑋̅𝑡−𝑑)
2

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

]]

1
2

 
𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)

𝜎
 

𝑈 = 
(𝑡 − 2 − 𝑑)𝑠𝑡−𝑑

2

𝜎2
 

𝜈 =  𝑡 − 2 − 𝑑 

 

This can be written as  

𝑇 =
𝑍

√𝑈
𝜈

=

1

[[
𝑡

𝑡 − 𝑑
+ 

(𝑋𝑡 − 𝑋̅𝑡−𝑑)
2

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

]]

1
2

 
𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)

𝜎

√
(𝑡 − 2 − 𝑑)𝑠𝑡−𝑑

2

𝜎2(𝑡 − 2 − 𝑑)

=  

[
 
 
 
 
 
 

1

[[
𝑡

𝑡 − 𝑑
+ 

(𝑋𝑡 − 𝑋̅𝑡−𝑑)
2

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

]]

1
2

 
𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)

𝑠𝑡−𝑑

]
 
 
 
 
 
 

 

For the statistic above to follow a t-distribution we must verify properties of Z, U, 

and ν.  The first condition is that Z must follow standard normal distribution with mean 

zero and standard deviation one which we have verified earlier in this work.  The next 

condition we need for our statistic is for U to follow a chi-square distribution. We take a 

closer look at what makes up U. 

𝑠𝑡−𝑑
2 = 

∑ (𝑦𝑖 − 𝛽̂0
(𝑡−𝑑)

− 𝛽̂1
(𝑡−𝑑)

𝑋𝑖)
2𝑡−𝑑

𝑖=1

𝑡 − 2 − 𝑑
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𝑈 = 
(𝑡 − 2 − 𝑑)𝑠𝑡−𝑑

2

𝜎2
 

 

It has been proven by Abraham and Ledolter (2006, 132) that the least squares estimates 

are independent of the residual sum of squares of the least squares estimates.  And it 

further proves that the residual sum of squares divided by σ2 follows χ2𝑡−𝑝−𝑑 = χ
2
𝑡−2−𝑑 

where p is the number of parameters after the intercept. 

The last condition we need to show to prove this statistic follows a t-distribution 

is that Z and U are independent.  We can arrive at this result through considering what we 

know about the individual terms that make up the Z and U.  Notice that U does not 

contain the 𝑌𝑡 observation, it only contains up to the observation at time 𝑡 − 𝑑 which 

means 𝑌𝑡 and U are independent.  We must also verify that 𝑌̂𝑡−𝑑(𝑑) is independent of U.  

𝑌̂𝑡−𝑑(𝑑) =  𝛽̂0
(𝑡−𝑑)

+ 𝛽̂1
(𝑡−𝑑)

𝑋𝑡 so is composed of estimates of beta.  Abraham and 

Ledolter (2006, 132) verifies that the parameter estimates and s2 are independent which 

means that 𝑌̂𝑡−𝑑(𝑑) is independent of U. 

 

After proving all the conditions above we can say. 

 

[
 
 
 
 
 
 

1

[[
𝑡

𝑡 − 𝑑
+ 

(𝑋𝑡 − 𝑋̅𝑡−𝑑)
2

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

]]

1
2

 
𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)

𝑠𝑡−𝑑

]
 
 
 
 
 
 

 ~ 𝐺𝑡−2−𝑑 

 

We note here that for both Case 1 Eq. (3-7) and Case 2 Eq. (3-10) that when the 

delay parameter d=1 𝑄𝑡 statistics are independent of each other i.e. 𝑄𝑡 is independent of 

𝑄𝑡−1.  This result is shown in (Koning, 1997). 
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3.3 The EWMA Charting Scheme 

As discussed previously a useful charting technique is the exponentially weighted 

moving average (EWMA) control chart.  The EWMA chart assigns weights to the 

previously observed points in order to represent the process’s history.  The EWMA chart 

is set up so it assigns the largest weight to the most recent observation and assigns an 

exponentially decreasing weight to each subsequent older observation.  The parameter 

that must be established by the engineer is λ which is commonly called the smoothing 

constant.  The smoothing constant, λ, is established as the weight given to the most recent 

rational subgroup mean and the statistic decays in value from there with time.  The 

weights are set up so they sum to unity and the oldest observation is dropped from the 

weighted average as a new one is observed and added to the weighted average.   

We expect that applying a EWMA scheme will further improve our charting 

technique because while still reducing the contamination effect using the delay d 

parameter in our statistic we can also improve the charts’ signal detection speed after a 

shift.  By weighting the influence of the most recent observations higher than the older 

observations we are able to detect smaller shifts and detect them faster. 

We now present the application of EWMA to our Q statistic.  The exponentially 

weighted moving average is defined in Eq. (3-11). 

𝑍𝑡(𝑑) = 𝜆 ∗ 𝑄𝑡(𝑌𝑡; 𝑑) + (1 − 𝜆)𝑍𝑡−1(𝑑) (3-11) 

 

where 0 < 𝜆 ≤ 1.  

 

 After applying a EWMA to our 𝑄𝑡(𝑌𝑡; 𝑑) statistic we will chart the value 𝑍𝑡(𝑑) in 

Eq. (3-11) for each time 1…t-d as it is observed.  Note that the starting value corresponds 

to the process target.  We intend on charting on a standardized normal control chart 



43 
 

which means our centerline will be at zero since 𝑄𝑡(𝑌𝑡; 𝑑)~𝑁(0,1).  So in our case since 

the Center Line is zero we define 𝑍0 = 0.  We define the corresponding control limits 

and center line of our EWMA chart in Eq. (3-12) and Eq. (3-13).  

𝑈𝐶𝐿 = 𝐿𝜎√
𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2𝑡] 

(3-12) 

𝐿𝐶𝐿 = −𝐿𝜎√
𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2𝑡] 

(3-13) 

 We note here that the control limits look very different from what was presented 

earlier in the thesis for Q charts.  The difference here stems from the application of the 

EWMA.  Q charts use constant Shewhart chart control limits but because of the 

[1 − (1 − 𝜆)2𝑡] term used in EWMA we get non-constant control limits.  This term 

however approaches unity as t grows larger meaning the control limits will approach 

steady state values after the chart has been running for several time periods.   

3.4 Simulation Study 

In this section we will discuss our results and conclusions from the testing of our 

method through simulation examples.  We offer an evaluation of charting performance 

based on Average Run Length values (ARL) calculated through simulation study. 

ARL is a common measure used as an evaluator of control charting performance.  

There are two main ARL measures considered.  The in-control ARL is defined as the 

average number of data points that must be plotted before a point indicates an out of 

control condition when the process is in-control, so the higher the in-control ARL the 

better the performance of the chart.  The in-control ARL can be thought of as the chart’s 

susceptibility to signaling the process is out of control when it is in fact in-control.   We 

desire this in-control ARL to be as high as possible and we compare our charting 
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performance to that of the Shewhart chart with ±3σ control limits.  The Shewhart Chart 

assumes independent normal distributed data so we determine the expected in-control 

ARL to be the inverse of the probability that a charting statistic exceeds ±3σ.  The other 

type of ARL, the out of control ARL, or ARL1, is defined as the average amount of 

samples needed to detect a process shift when the process is in the out of control state.  

Both ARL should be considered when an engineer designs a control chart. It is desirable 

to have a short out of control ARL and a long in-control ARL. 

In designing a charting method, typically the in-control ARL is fixed at a certain 

value, effectively fixing the false alarm rate, so charts can be evaluated and compared 

based solely on their out of control ARL performance.  For example the expected in-

control ARL for a Shewhart-type chart with ±3σ control limits is 370.  So in testing we 

wish to adjust the control limits of all the other charting methods we are comparing to the 

Shewhart chart so their in-control ARLs are approximately 370.  All other things equal a 

shorter out of control ARL indicates better charting performance since this measure refers 

to the average amount of observations seen after a shift needed before the chart detects it. 

We simulate independent normally distributed data following a certain in-control 

linear trend using Matlab.  At a certain time which we will call the change-point, τ, we 

will introduce a shift in either the slope or the intercept parameter and observe how 

quickly and accurately our proposed Q chart based methods respond.  We plan to 

simulate several scenarios varying slope shift, intercept shift and the number of in-control 

points observed prior to the shift with 2000 iterations for each test. 

We now consider a shift in slope that closely simulates the situation in which we 

would apply our method in practice.  Small linear trend shift detection is made possible 
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with our proposed methodology so a shift such as in Figure 2 below that is 1.5 times the 

original slope parameter can be detected accurately and efficiently.  As can be seen this 

shift is hard to detect when only considering a visual inspection.  Figure 2 shows the 

mean of the observations with a change point at time 30.  

(a)                                                         (b) 

The mean curve in Figure 2 can be generated from the following equation:  

𝑌𝑡 = {
𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡                 𝑓𝑜𝑟 𝑡 = 1,2…1 − 𝜏

𝑌𝑡 = 𝛽0′ + 𝛽1′𝑋𝑡               𝑓𝑜𝑟 𝑡 = 𝜏, 𝜏 + 1,… 
} 

 

(3-14) 

where 

𝛽1
′ = γ𝛽1  

𝛽0
′ = 𝛽1𝑋𝜏 + 𝛽0 − 𝛽1

′𝑋𝜏 + α 

𝜏 is the changepoint, α is the intercept shift and γ is the slope shift factor   

 

Equation (3-14) shows how we define our in-control linear trend and how the out 

of control linear trend is related to the in-control state.  We can see from Figure 2 above 

that the linear trends we consider are continuous functions that meet at a common point 

where the regression parameters change.  This meeting point between the linear trends is 
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Figure 2: Simulated Linear Trend with Slope Shift at Change Point 30 
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referred to as the change point and is denoted by 𝜏.  In Figure 2(a) we show the 

observations that are subject to a slope shift at change point 30.  In practice, the 

observations are noisy as in the model given in Equation (3-1).  In Figure 2(b) we show 

the observations with a random error term that simulates noise. Once the random error 

term is included it becomes nearly impossible to identify where the change point occurs 

or if a slope or intercept shift even happened at all through only visual inspection.  It is 

for this reason that we propose using an SPC method to detect this shift. 

 In this simulation study we also consider intercept shifts.  We show below the 

intercept shifts we tested our charting methods on.  Like in Figure 2 we show the 

observations that are subject a change in the parameter values at change point 30.  In 

Figure 3(b) we show the observations with a random error term that simulates noise but 

this time with an intercept shift.  In Figure 3 we show a three sigma magnitude y-

intercept shift. 
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Figure 3: Simulated Linear Trend with Intercept Shift at Change Point 30 
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It is clear to see that this is once again a very slight shift in the original linear 

trend.  This becomes extremely hard to detect through visual inspection once the noise 

term is considered.   

In this thesis we will study and compare the three methods we proposed: the 

Shewhart self-starting Q chart for linear trend (referred to as Shewhart in this thesis), the 

EWMA chart for Q statistics (referred to as EWMA in this thesis), and the EWMA with 

delay d (referred to as EWMA-d in this thesis).  The first step we need to take in 

comparing ARL performance is to make sure that the in-control ARL for all the charts is 

approximately the same.  This step is necessary because without fixing the in-control 

ARL we could not fairly compare the methods.  We use the established in-control ARL 

for the Shewhart charts with three sigma control limits of 370 and find a control limit 

value of the other charts so we can compare them.  We referenced control limit values for 

the EWMA chart to match with those of the Shewhart chart and estimated the necessary 

control limits of our chart through simulation.  For the Shewhart charts based on Q-

statistics, as we showed in Section 3.2 that the Q-statistics extended for linear trends are 

i.i.d. standard normal random variables, analytical approach is available to find the 

control limit for any given ARL.  For EWMA based control charts with or without delays, 

we must determine the proper control limits through Monte Carlo simulation. We use 

Monte Carlo simulation to evaluate the in-control ARL for any given control limit and 

adjust the control limits so that the corresponding ARL is close enough to the desired 

value. We show the control limits for the desired in-control ARL for the three charts in 

Table 1 below. 
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Table 1: In-Control ARL Simulation Estimates 

Weight 
(𝛌) 

d step 

Parameter 

(d) 

Control 

Limit 

(L) 

Chart 

Type 

ARL0 

1.0 1.0 3.00 Shewhart 370.4 

0.2 1.0 2.86 EWMA 370.5 

0.2 2.0 2.9339 EWMA-d 370.6 

0.2 3.0 2.988 EWMA-d 370.9 

0.2 4.0 3.0185 EWMA-d 370.5 

0.2 5.0 3.0358 EWMA-d 370.7 

 

 We tested several different scenarios in order to compare the performance of our 

charting schemes.  We tested varying degrees of both slope and intercept shifts.  We 

show in Table 2 the slope, intercept, and standard deviation we used in our simulation 

study.  The results are shown in Tables 3, 4, 5, and 6.  We again use the notation from Eq. 

(3-14). 

Table 2: Parameter Values used in  

Simulation Study 

Parameter Value 

Slope (𝛽1) 2.0 

Intercept (𝛽0) 0.0 

Standard Deviation (σ) 4.0 

 

We first tested our chart schemes for what we designated as Case 1 which 

corresponds to the case where the in-control standard deviation is known but the in-

control variance is not.  We varied both the slope factor and the intercept shift factor and 

ran simulations to observe the out of control ARL.  Our results for slope and intercept 

shifts with 30 in-control data points can be seen in Table 3.  We vary the slope shift 

factor from 1.5 to 2.5 and included intercept shifts of twice and three times the standard 

deviation. 
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Table 3: Case 1 Out of Control ARL Simulation Results In-control History of 30 points 

Weight 
(𝛌) 

delay 

Parameter 

(d) 

Control 

Limit 

(L) 

Chart 

Type 

Slope 

Shift 

Factor 

(γ) 

Intercept 

Shift 

Factor 

(α) 

History 

Length 

In-

Control 

ARL1 

1.0 1.0 3.00 Shewhart 1.5 0σ 30 18.5505 

0.2 1.0 2.86 EWMA 1.5 0σ 30 10.2605 

0.2 5.0 3.0358 EWMA-d 1.5 0σ 30 9.3765 

1.0 1.0 3.00 Shewhart 2.0 0σ 30 8.4340 

0.2 1.0 2.86 EWMA 2.0 0σ 30 6.6010 

0.2 5.0 3.0358 EWMA-d 2.0 0σ 30 6.3550 

1.0 1.0 3.00 Shewhart 2.5 0σ 30 5.9900 

0.2 1.0 2.86 EWMA 2.5 0σ 30 5.3390 

0.2 5.0 3.0358 EWMA-d 2.5 0σ 30 5.1965 

1.0 1.0 3.00 Shewhart 1.0 2σ 30 122.3605 

0.2 1.0 2.86 EWMA 1.0 2σ 30 15.7090 

0.2 5.0 3.0358 EWMA-d 1.0 2σ 30 9.2375 

1.0 1.0 3.00 Shewhart 1.0 3σ 30 22.7975 

0.2 1.0 2.86 EWMA 1.0 3σ 30   3.3280 

0.2 5.0 3.0358 EWMA-d 1.0 3σ 30 3.1040 

 

 We conduct the same simulations for the case in which we only have 10 in-

control observations to estimate our parameters from.  We expect the out of control ARL 

to be larger in this case because the chart is not trained with as many in-control points.  

The results from the conditions of this simulation study can be seen in Table 4. 

 

 

 

 

 

 



50 
 

Table 4: Case 1 Out of Control ARL Simulation Results In-control History of 10 points 

Weight 
(𝛌) 

delay 

Parameter 

(d) 

Control 

Limit 

(L) 

Chart 

Type 

Slope 

Shift 

Factor 

(γ) 

Intercept 

Shift 

Factor 

(α) 

History 

Length 

In-

Control 

ARL1 

1.0 1.0 3.00 Shewhart 1.5 0σ 10 299.7390 

0.2 1.0 2.86 EWMA 1.5 0σ 10 102.9095 

0.2 2.0 2.9339 EWMA-d 1.5 0σ 10 71.0905 

1.0 1.0 3.00 Shewhart 2.0 0σ 10   93.1250 

0.2 1.0 2.86 EWMA 2.0 0σ 10 10.1320 

0.2 2.0 2.9339 EWMA-d 2.0 0σ 10 8.9280   

1.0 1.0 3.00 Shewhart 2.5 0σ 10 25.6075 

0.2 1.0 2.86 EWMA 2.5 0σ 10 6.8780 

0.2 2.0 2.9339 EWMA-d 2.5 0σ 10 6.1780 

1.0 1.0 3.00 Shewhart 1.0 2σ 10 238.4975 

0.2 1.0 2.86 EWMA 1.0 2σ 10 41.4040 

0.2 2.0 2.9339 EWMA-d 1.0 2σ 10 29.6540 

1.0 1.0 3.00 Shewhart 1.0 3σ 10 110.4595 

0.2 1.0 2.86 EWMA 1.0 3σ 10 12.7190 

0.2 2.0 2.9339 EWMA-d 1.0 3σ 10 9.6665 

 

 After testing Case I we wanted to also conduct the same tests but this time with 

unknown in-control mean and unknown in-control standard deviation.  This result will 

give us a better idea of how the chart will perform in practice because in most self-

starting chart monitoring scenario the engineer would not know the value of the in-

control parameters prior to the start of the run.  Since it is more difficult to detect a shift 

when both the in-control parameters are unknown instead of just the in-control mean we 

expect our out of control ARL to be greater across all tests.  After running the simulations 

we present our results in Tables 5 and 6. 

 Once again we run our first set of simulations with 30 in-control points and then 

also test the same cases with 10 in-control observations. 
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Table 5: Case 2 Out of Control ARL Simulation Results In-control History of 30 points 

Weight 
(𝛌) 

delay 

Parameter 

(d) 

Control 

Limit 

(L) 

Chart 

Type 

Slope 

Shift 

Factor 

(γ) 

Intercept 

Shift 

Factor 

(α) 

History 

Length 

In-

Control 

ARL1 

1.0 1.0 3.00 Shewhart 1.5 0σ 30 >500 

0.2 1.0 2.86 EWMA 1.5 0σ 30 10.9855 

0.2 5.0 3.0358 EWMA-d 1.5 0σ 30 9.6440 

1.0 1.0 3.00 Shewhart 2.0 0σ 30 >500 

0.2 1.0 2.86 EWMA 2.0 0σ 30 6.8240 

0.2 5.0 3.0358 EWMA-d 2.0 0σ 30 6.4525 

1.0 1.0 3.00 Shewhart 2.5 0σ 30 >500 

0.2 1.0 2.86 EWMA 2.5 0σ 30 5.5155 

0.2 5.0 3.0358 EWMA-d 2.5 0σ 30 5.3545 

1.0 1.0 3.00 Shewhart 1.0 2σ 30 >500 

0.2 1.0 2.86 EWMA 1.0 2σ 30 28.0750 

0.2 5.0 3.0358 EWMA-d 1.0 2σ 30 13.4465 

1.0 1.0 3.00 Shewhart 1.0 3σ 30 >500 

0.2 1.0 2.86 EWMA 1.0 3σ 30 6.6260 

0.2 5.0 3.0358 EWMA-d 1.0 3σ 30 3.6455 

 

 We expect that the combined effect of having unknown in-control mean and 

standard deviation with the smaller number of in-control observations will increase our 

out of control ARLs even further.  We show these results in Table 6. 
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Table 6: Case 2 Out of Control ARL Simulation Results In-control History of 10 points 

Weight 
(𝛌) 

delay 

Parameter 

(d) 

Control 

Limit 

(L) 

Chart 

Type 

Slope 

Shift 

Factor 

(γ) 

Intercept 

Shift 

Factor 

(α) 

History 

Length 

In-

Control 

ARL1 

1.0 1.0 3.00 Shewhart 1.5 0σ 10 >500 

0.2 1.0 2.86 EWMA 1.5 0σ 10 169.7330 

0.2 2.0 2.9339 EWMA-d 1.5 0σ 10 121.7490 

1.0 1.0 3.00 Shewhart 2.0 0σ 10 >500 

0.2 1.0 2.86 EWMA 2.0 0σ 10 25.3455 

0.2 2.0 2.9339 EWMA-d 2.0 0σ 10 15.2350 

1.0 1.0 3.00 Shewhart 2.5 0σ 10 >500 

0.2 1.0 2.86 EWMA 2.5 0σ 10 8.5175 

0.2 2.0 2.9339 EWMA-d 2.5 0σ 10 7.0600 

1.0 1.0 3.00 Shewhart 1.0 2σ 10 >500 

0.2 1.0 2.86 EWMA 1.0 2σ 10 124.3725 

0.2 2.0 2.9339 EWMA-d 1.0 2σ 10 96.0830 

1.0 1.0 3.00 Shewhart 1.0 3σ 10 >500 

0.2 1.0 2.86 EWMA 1.0 3σ 10 63.6840 

0.2 2.0 2.9339 EWMA-d 1.0 3σ 10 31.7305 

 

 In Tables 5 and 6 we notice that there are instances in which the out of control 

ARL exceeds 500 data points.  This result comes as a surprise since the in-control ARL 

for all of these charts is approximately 370 so we would expect the out of control ARL to 

be below this value.  This result leads us to the conclusion that the Shewhart Q chart fails 

in detecting the shift we have simulated, and may not be effective at all in detecting these 

kinds of small magnitude linear shifts.  We notice that in the case presented in Tables 3 

and 4, when the in-control variance is known, we do not observe this ineffectiveness.  

This leads us to believe that the ineffectiveness in detection stems from the estimation of 

the in-control process variance.  We hypothesize that the estimate of the MSE is 

contaminated by out of control points and as a result the MSE estimate at each time t is 

too large because of the wide range of response we observe.   
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After reviewing the results from our simulation study we were able to establish 

some clear patterns in performance of the charting methods.  First, we notice that the 

Shewhart chart was significantly less effective in shift detection than both of the EWMA 

based methods for most cases.  It has similar performance to the EWMA based methods 

only for very large shifts. This conforms to our expectation since EWMA charts are much 

more effective in small shift detection than are Shewhart charts.  Therefore, if small shift 

detection is desired we recommend either of our EWMA based methods over our 

Shewhart chart.  Another noticeable trend is a product of the number of in-control 

observations seen prior to the change point.  In general when 30 in-control observations 

were seen our methods tended to perform better than in the case when only 10 in-control 

observations were seen.  This too does not come as a surprise to us.  With more in-control 

observations the chart can better estimate the in-control state and is essentially trained 

more before the parameter shifts are introduced and therefore has better performance.  

Another observation we notice also involves the length of the in-control state.  We 

observe that in Case 2 when both in-control mean and in-control standard deviation are 

unknown that our charts are more sensitive to the number of in-control observations.  

Since the in-control standard deviation needs to be estimated in this case along with the 

mean, less in-control observations make it even more difficult to detect shifts in the linear 

trend.   

Especially when looking at the ARL1 performance in the cases in which we 

introduced small shifts it is clear that the EWMA methods outperform the Shewhart 

method we propose.  Between EWMA and EWMA-d, they perform similarly with 
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EWMA-d always slightly better than EWMA.  For more difficult cases when the shift is 

small and the ARL1 is large, the advantage of EWMA-d becomes more noticeable. 

3.5 Application to Battery Degradation Data 

 After testing our proposed methods on simulated data we wanted to test our 

methods on an actual collection of data that exemplifies the type of degradation trend that 

we wish to monitor.  This example involves monitoring the changing internal resistance 

signal of automotive lead-acid batteries in continued week by week use.  The internal 

resistance is considered a critical measure of the health of these batteries so this internal 

resistance (mΩ) measure will serve as our quality characteristic of interest and our 

estimation of the current level of degradation of the battery.  In general an increasing 

internal resistance measure indicates decreasing battery health.  This resistance measure 

often increases as the time the battery is in use increases which is why it serves as a 

useful indicator to predict the future health status of the battery.   

In assessing the battery life based on the resistance value we are interested in 

detecting the point in which the degradation trend shifts from its in-control state into its 

out of control state.  It has been observed that the internal resistance measure evolves 

differently towards the end of a battery’s life. After a battery has degraded down to a 

certain level the resistance trend may change its form and evolve to a more accelerated 

degradation trend compared to its early stage of usage, which is what we call the change 

point.  Once a battery is in this accelerated degradation phase of its lifetime, failure is 

expected soon after.  It is therefore in our best interest to detect this change point as soon 

as possible so we can take precautionary measures and replace the battery in order to 

avoid system failure.   
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There are two different kinds of failures that we consider in failure analysis, soft 

failure and hard failure.  Soft failure is defined as the event of the degradation signal 

surpassing a certain threshold.  This soft failure threshold gives us an idea of when to 

expect failure but the actual failure of the battery differs from battery to battery.  This is 

why we desire a more precise method for predicting the occurrence of failure, which we 

accomplish by detecting the shift in degradation trend.  The time when the battery fails to 

crank the engine is what we consider to be the actual failure state of the battery, which is 

referred to as hard failure.  From looking at internal resistance and the occurrence of hard 

failure it is made obvious that there is no specific fixed threshold that determines the 

failure time.  Therefore, our methods that detect the occurrence of the change point into 

the accelerated degradation state of the battery will offer a warning to the engineer before 

hard failure actually occurs.  This prognosis of battery health in the near future will save 

the engineer time and money since preventative action can help avoid system failure and 

its associated costs.   

We take a closer look at internal resistance data collected weekly for two different 

batteries what we will call JBI1 and JBI7.  In Figure 4(a) we show the JBI1 data plotted 

on a graph of Internal Resistance vs. Time.  It can be observed that this data exhibits a 

linear trend that changes in value at some change point to a more accelerated trend.  It is 

our desire to detect when this change point occurs so that we know when the process goes 

from the in-control to the out of control state.  We show in Figure 4(b) our Shewhart 

Chart method, in Figure 4(c) our EWMA based method and in Figure 4(d) our EWMA 

with delay parameter d=2. 
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 From the charts in Figure 4 one can observe when the chart indicated an out of 

control signal by noting the point in which the magnitude of the statistic exceeded the 

control limits.  We call this point the signal point and have included our findings in Table 

7 for each of our proposed charting methods.  

Table 7: Signal Points of our Proposed Charts for JBI1 

 

 

 

 

 

Weight 
(𝛌) 

delay 

Parameter 

(d) 

Control 

Limit 

(L) 

Chart 

Type 

Signal 

Point 

1.0 1.0 3.00 Shewhart 9 

0.2 1.0 2.86 EWMA 9 

0.2 2.0 2.9339 EWMA-d 9 
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Figure 4: Application of our Charting Methods to Battery JBI1 Data 
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We can see from the results we obtained that all three of the charts were able to 

detect the occurrence of the changing linear trend quickly and effectively.  Since they all 

signaled at time t=9 this consistency shows that these would all be legitimate methods 

given the right conditions.  

We then take a look at another battery degradation data set.  In Figure 5(a) we 

show the JBI7 data plotted on a graph of Internal Resistance vs. Time.  It can be observed 

that this data also exhibits a linear trend that changes in value at some change point to a 

more accelerated trend.  Like before we show in Figure 5(b) our Shewhart Chart method, 

in Figure 5(c) our EWMA based method and in Figure 5(d) our EWMA with delay 

parameter d=2. 
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Figure 5: Application of our Charting Methods to Battery JBI7 Data 
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 From the charts in Figure 5 we once again record the signal point for each of the 

charts and have included our findings in Table 8 for each of our proposed charting 

methods.  

Table 8: Signal Points of our Proposed Charts for JBI7 

Weight 
(𝛌) 

delay 

Parameter 

(d) 

Control 

Limit 

(L) 

Chart 

Type 

Signal 

Point 

1.0 1.0 3.00 Shewhart 12 

0.2 1.0 2.86 EWMA 9 

0.2 2.0 2.9339 EWMA-d 9 

 

We can see from the results we obtained that all three of the charts were able to 

detect the occurrence of the new trend but this time the performance differed among 

methods.  The Shewhart chart did not signal until the time t=12 while both the EWMA 

based charts both signaled at time t=9.  Although the biggest change in rate occurs at 

about t=11, by looking at the degradation signal in Figure 5 more closely, accelerated 

degradation seems to occur at about t=9.  But the Shewhart chart fails to detect this 

acceleration since the change of the degradation rate is small.  This may cause a missed 

opportunity to plan preventive action before the actual failure occurs. This shows that in 

the case of shifts that are smaller in magnitude, harder to detect, that there is a clear 

advantage in using one of the EWMA methods we proposed instead of the Shewhart 

based method. 

Since there are a limited amount of data points available in these battery examples 

this is a typical situation where a self-starting chart is especially helpful.  With such 

limited data availability one cannot establish in-control estimates due to data collection 

limitations, therefore the in-control parameters must be established on-line while the 
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process is happening.  We confirm that our online estimation of the parameters is valid 

through our results from these battery examples and through simulation study. 
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CHAPTER 4 CONCLUSION AND FUTURE WORK 

In this thesis we proposed three methods to monitor a non-stable in-control mean 

that follows some linear trend.  Our three methods included a Shewhart Chart method, a 

EWMA based method and a EWMA with delay parameter d.  All of our methods utilized 

the ideas of the self-starting Q chart.  After reviewing the current SPC literature we found 

there was an opportunity to solve the problem of monitoring situations in which the in-

control state follows a linear trend so there are very little research efforts to solve this 

problem. 

We start by reviewing the self-starting Q chart along with its assumptions and 

derivation.  We let the development of Quesenberry’s Q-statistic guide us in developing 

our own Q statistic that utilized ideas from linear regression in order to monitor a non-

stable mean.  After developing our own Q statistic we were able to make adjustments that 

would improve upon the most basic implementation of the Q statistic for linear trend.  

We also propose two methods that utilize a EWMA scheme.  We expect these charts to be 

less subject to the contamination effects on our in-control estimation from our out of 

control state and also expect them to be more effective in small shift detection.  We 

verified both of these results through simulation study and in applying our methods to 

battery degradation data.  In our third method we introduce a delay parameter d to our 

statistic in addition to applying EWMA.  We introduce this delay parameter to further 

reduce the contamination effects we mentioned earlier and verified that this method 

performed the best out of our methods for small shift detection.  Our Shewhart chart 

method is still a valid option for solving this problem but is more effective in cases where 

the shift experienced is larger in magnitude.  We recommend the use of our EWMA 
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methods for the small shift detection case as they are more sensitive. Note that although 

in this thesis the explanatory variable is time t, all the results can be easily extended when 

a general explanatory variable is used.  

 After gathering results from our research we realized several opportunities for 

future work.  One such opportunity is extending the simple linear regression case we 

presented to one in which there are two or more explanatory variables.  In practice it is 

common for a process to have multiple explanatory variables that can affect the quality 

measurements.  Therefore, for the practicality of these charting methods it would be 

beneficial for the chart to be able to handle the multiple linear regression case so we can 

monitor linear trends that depend on two or more variables. 

 Another obvious extension of our method is to monitor other in-control trends.  

There are several processes in which the in-control state follows a trend that is non-linear.  

Being able to monitor a different trend would have all the same advantages of those for 

the linear trend case and would add significant flexibility to our proposed methods. 

 Like what is done in many EWMA papers, there is an additional opportunity for 

future work in establishing in-control ARL values for the varying levels of the smoothing 

parameter since in this thesis we only considered the case in which =0.2.  This would 

help greatly when an engineer wants to use such a chart in practice since it can be very 

time consuming to estimate ARL values through Monte Carlo simulation.  

We also noticed opportunities that stem from relaxing some of our assumptions.  

For our charting methods we assumed that the observations were i.i.d. coming from a 

normal distribution.  There are cases in which the data have autocorrelation and a 

charting method that could handle this situation would be very beneficial.  The other 
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assumption made is that the data is normally distributed, this too presents an opportunity 

for further work to handle non-normal data.   
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APPENDIX 

We provide in this appendix the derivation of the distribution-preserving constant used in 

Equations (3-7) and (3-10).  We substitute 𝛽̂1
(𝑡−𝑑)

=
∑ (𝑋𝑖−𝑋̅𝑡−𝑑)𝑦𝑖
𝑡−𝑑
𝑖=1

∑ (𝑋𝑖−𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

 into the equation and 

factor the summation out front in order to simplify our calculation of the variance. 

 

𝑉(𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)) = 𝜎
2 + 𝑉 (∑{

𝑦𝑖
𝑡 − 𝑑

𝑡−𝑑

𝑖=1

+ (𝑋𝑡 − 𝑋̅𝑡−𝑑)
(𝑋𝑖 − 𝑋̅𝑡−𝑑)𝑦𝑖

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

}) 

= 𝜎2 + 𝑉 (∑{
1

𝑡 − 𝑑

𝑡−𝑑

𝑖=1

+
(𝑋𝑖 − 𝑋̅𝑡−𝑑)(𝑋𝑡 − 𝑋̅𝑡−𝑑)

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

}𝑦𝑖) 

We then define 

𝐶𝑖 = (
1

𝑡 − 𝑑
+
(𝑋𝑖 − 𝑋̅𝑡−𝑑)(𝑋𝑡 − 𝑋̅𝑡−𝑑)

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

) 

𝑉(𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)) =  𝜎
2 + 𝑉(∑ 𝐶𝑖

𝑡−𝑑
𝑖=1 𝑦𝑖)  

𝑉(𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)) =  𝜎
2 +∑𝐶𝑖

2

𝑡−𝑑

𝑖=1

𝜎2) 

∑𝐶𝑖
2

𝑡−𝑑

𝑖=1

= ∑(
1

𝑡 − 𝑑
+
(𝑋𝑖 − 𝑋̅𝑡−𝑑)(𝑋𝑡 − 𝑋̅𝑡−𝑑)

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

)

2𝑡−𝑑

𝑖=1

 

= ∑(
1

𝑡 − 𝑑
)
2𝑡−𝑑

𝑖=1

+
2(𝑋𝑡 − 𝑋̅𝑡−𝑑)∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)

𝑡−𝑑
𝑖=1

(𝑡 − 𝑑)∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

+
(𝑋𝑡 − 𝑋̅𝑡−𝑑)

2∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

(∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1 )2
 

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
𝑡−𝑑
𝑖=1 = 0 so the second term above drops out 

∑𝐶𝑖
2

𝑡−1

𝑖=1

= 
1

𝑡 − 𝑑
+ 

(𝑋𝑡 − 𝑋̅𝑡−𝑑)
2

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−1
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𝑉(𝑌𝑡 − 𝑌̂𝑡−𝑑(𝑑)) =  𝜎
2 + ∑𝐶𝑖

2

𝑡−1
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2
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= 𝜎2 [1 + [
1

𝑡 − 𝑑
+

(𝑋𝑡 − 𝑋̅𝑡−𝑑)
2

∑ (𝑋𝑖 − 𝑋̅𝑡−𝑑)
2𝑡−𝑑

𝑖=1

]] 
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𝑡 − 𝑑
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1

𝑡 − 𝑑
+
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2
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= 𝜎2 [[
𝑡

𝑡 − 𝑑
+
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